ELCO Intelligent I/O-FS200

SM | Manual
May 2011

Copyright © ELCO. All Rights Reserved.

This document contains proprietary information of ELCO and is not to be disclosed or used except in accordance with applicable agreements.

This material is protected by the copyright laws. It may not be reproduced, distributed, or altered in any fashion by any entity (either internal or external to ELCO), except in accordance with applicable agreements, contracts or licensing, without the express writen consent of ELCO and the business management owner of the material.

For permission to reproduce or distribute, please contact:
ELCO(TIANJIN)ELECTRONICS CO,.LTD
No.12,4th XEDA Branch Road,Xiqing Economic Development Area,
Tianjin 300385,P.R.China
Tel:+86 22 23888288/23788282 Fax:+86 2223889657
E-mail:sales@elco.cn
http:www.elco-holding.com.cn

Note

Every effort has been made to ensure that the information contained in this document was complete and accurate at the time of publishing. Nevertheless, the authors retain the right to modify the information. This customer document describes all the hardware units and functions known at the present time. Descriptions may be included for units which are not present at the customer site. The exact scope of delivery is described in the respective purchase contract.

CE Conformity

Hereby, ELCO declares that the products and systems are in compliance with the essential requirements and other relevant provisions of the following directives:

- 2004/108/EC Electromagnetic Compatibility Directive
- 2006/95/EC Low Voltage Directive

Conformity is indicated by the CE marking affixed to the product.

Conformity Information

For more information regarding CE marking and Declaration of Conformity (DoC), please contact your local ELCO customer service organization.

Trademarks

ELCO, FS200, and FC200 are
registered trademarks of ELCO(TIANJIN)ELECTRONICS CO,.LTD
SPEED7 is a registered trademark of profichip GmbH.
SIMATIC, STEP, SINEC, S7-300 and S7-400 are registered trademarks of Siemens AG.
Microsoft und Windows are registered trademarks of Microsoft Inc., USA.
Portable Document Format (PDF) and Postscript are registered trademarks of Adobe Systems, Inc.
All other trademarks, logos and service or product marks specified herein are owned by their respective companies.

Information product support

Contact your local ELCO Customer Service Organization representative if you wish to report errors or questions regarding the contents of this document. If you are unable to locate a customer service center, contact ELCO as follows:
ELCO(TIANJIN)ELECTRONICS CO,.LTD
No.12,4th XEDA Branch Road,Xiqing Economic Development Area,
Tianjin 300385,P.R.China
Tel:+86 22 23888288/23788282 Fax:+86 2223889657
E-mail:sales@elco.cn
http:www.elco-holding.com.cn

Technical support

Contact your local ELCO Customer Service Organization representative if you wish to report errors or questions regarding the contents of this document. If you are unable to locate a customer service center, contact ELCO as follows:
ELCO(TIANJIN)ELECTRONICS CO,.LTD
No.12,4th XEDA Branch Road,Xiqing Economic Development Area,
Tianjin 300385,P.R.China
Tel:+86 22 23888288/23788282 Fax:+86 2223889657
E-mail:sales@elco.cn
http:www.elco-holding.com.cn

Contents

About this manual 1
Safety information 2
Chapter 1 Basics and Assembly 1-1
Safety Information for Users 1-2
System conception 1-3
Dimensions 1-6
Installation 1-7
Wiring 1-11
Trouble shooting 1-14
Installation guidelines 1-15
General data 1-18
Chapter 2 Digital Input 2-1
ELCO FS2-DI-BB00 - DI 2xDC 24V 2-2
ELCO FS2-DI-BB50 - DI 2xDC 24V NPN 2-4
ELCO FS2-DI-BD00 - DI 4xDC 24V 2-6
ELCO FS2-DI-BD40 - DI 4xDC 24V 3 wire 2-8
ELCO FS2-DI-BD50 - DI 4xDC 24V NPN 2-10
ELCO FS2-DI-BF00 - DI 8xDC 24V 2-12
ELCO FS2-DI-BF50 - DI 8xDC 24V NPN 2-14
Chapter 3 Digital Output 3-1
ELCO FS2-DO-BB00 - DO 2xDC 24 V 0.5 A 3-2
ELCO FS2-DO-BB20 - DO 2xDC 24V 2A 3-4
ELCO FS2-DO-BB50 - DO 2xDC 24V 0.5A NPN 3-6
ELCO FS2-DO-BD00 - DO 4xDC 24V 0.5A 3-8
ELCO FS2-DO-BD20 - DO 4xDC 24V 2A 3-10
ELCO FS2-DO-BD50 - DO 4xDC 24V 0.5A NPN. 3-12
ELCO FS2-DO-BF00 - DO 8xDC 24V 0.5A 3-14
ELCO FS2-DO-BF50 - DO 8xDC 24V 0.5A NPN 3-16
ELCO FS2-DO-HB10-DO 2xRelay 3-18
Chapter 4 Analog Input 4-1
General 4-2
Analog value 4-3
Measuring ranges 4-4
ELCO FS2-AI-BB30 - Al 2x12Bit 0...10V 4-9
ELCO FS2-AI-BB40 - Al 2x12Bit 0(4)...20mA 4-13
ELCO FS2-AI-BB90 - Al 2×16 Bit TC 4-17
ELCO FS2-AI-BD30 - Al 4x12Bit 0...10V 4-26
ELCO FS2-AI-BD40 - Al 4x12Bit 0(4)...20mA 4-30
ELCO FS2-AI-BD80 - AI 4x16Bit R/RTD 4-34
Chapter 5 Analog Output 5-1
General 5-2
Analog value 5-3
Output ranges 5-4
ELCO FS2-AO-BB30 - AO 2x12Bit 0...10V 5-5
ELCO FS2-AO-BB40 - AO 2x12Bit 0(4)...20mA. 5-9
ELCO FS2-AO-BD30 - AO 4x12Bit 0...10V 5-13
ELCO FS2-AO-BD40 - AO 4x12Bit 0(4)...20mA 5-17

About this manual

This manual describes the signal modules (SM) of the FS200 from ELCO. Here you may find besides of a product overview a detailed description of the single modules. You'll receive information about the connection and the deployment of the FS200 SM modules.

Overview Chapter 1: Basics and Assembly
The focus of this chapter is on the introduction of the ELCO FS200. Here you will find the information required to assemble and wire a controller system consisting of FS200 components.
Besides the dimensions the general technical data of FS200 will be found.

Chapter 2: Digital input

In this chapter you will find the description of the digital input modules of the FS200 from ELCO.

Chapter 3: Digital output

The digital output modules of the FS200 will be found here.

Chapter 4: Analog input

After the introduction to the analog input modules and the list of the measuring ranges the description of the analog input modules of the FS200 will be found here.

Chapter 5: Analog output

After the introduction to the analog output and the list of the output ranges the description of the analog output modules of the FS200 will be found here.

Objective and contents

Target audience

Structure of the manual

Guide to the document

Availability The manual is available in:

- printed form, on paper
- in electronic form as PDF-file (Adobe Acrobat Reader)

Icons Important passages in the text are highlighted by following icons and Headings

Danger!

Immediate or likely danger.
Personal injury is possible.

Attention!

Damages to property is likely if these warnings are not heeded.

Note!

Supplementary information and useful tips.

Safety information

Applications conforming with specifications

Documentation

The FS200 is constructed and produced for:

- communication and process control
- general control and automation applications
- industrial applications
- operation within the environmental conditions specified in the technical data
- installation into a cubicle

Danger!

This device is not certified for applications in

- in explosive environments (EX-zone)

The manual must be available to all personnel in the

- project design department
- installation department
- commissioning
- operation

The following conditions must be met before using or commissioning the components described in this manual:

- Modification to the process control system should only be carried out when the system has been disconnected from power!
- Installation and modifications only by properly trained personnel
- The national rules and regulations of the respective country must be satisfied (installation, safety, EMC ...)

Disposal National rules and regulations apply to the disposal of the unit!

Chapter 1 Basics and Assembly

Overview	The focus of this chapter is on the introduction of the ELCO FS200. Here you will find the information required to assemble and wire a controller system consisting of FS200 components.
	Besides the dimensions the general technical data of FS200 will be found.
Content	Topic Page
	Chapter 1 Basics and Assembly .. 1-1
	Safety Information for Users... 1-2
	System conception ... 1-3
	Dimensions ... 1-6
	Installation..1-7
	Wiring... 1-11
	Trouble shooting .. 1-14
	Installation guidelines .. 1-15
	General data ..1-18

Safety Information for Users

Handling of
electrostatic
sensitive modules

ELCO modules make use of highly integrated components in MOSTechnology. These components are extremely sensitive to over-voltages that can occur during electrostatic discharges.
The following symbol is attached to modules that can be destroyed by electrostatic discharges.

The Symbol is located on the module, the module rack or on packing material and it indicates the presence of electrostatic sensitive equipment.
It is possible that electrostatic sensitive equipment is destroyed by energies and voltages that are far less than the human threshold of perception. These voltages can occur where persons do not discharge themselves before handling electrostatic sensitive modules and they can damage components thereby, causing the module to become inoperable or unusable.
Modules that have been damaged by electrostatic discharges can fail after a temperature change, mechanical shock or changes in the electrical load.
Only the consequent implementation of protection devices and meticulous attention to the applicable rules and regulations for handling the respective equipment can prevent failures of electrostatic sensitive modules.

Shipping of Modules must be shipped in the original packing material.

Measurements and alterations on electrostatic sensitive modules

When you are conducting measurements on electrostatic sensitive modules you should take the following precautions:

- Floating instruments must be discharged before use.
- Instruments must be grounded.

Modifying electrostatic sensitive modules you should only use soldering irons with grounded tips.

Attention!

Personnel and instruments should be grounded when working on electrostatic sensitive modules.

System conception

Overview

Components

FS200 is a modular automation system for assembly on a 35 mm mounting rail. By means of the peripheral modules with 2,4 or 8 channels this system may properly be adapted matching to your automation tasks.
The wiring complexity is low, because the supply of the DC 24 V power section is integrated to the backplane bus and defective modules may be replaced with standing wiring.
By deployment of the power modules in contrasting colors within the system, further isolated areas may be defined for the DC 24 V power section supply, respectively the electronic power supply may be extended with 2 A .

The FS200 consists of the following components:

- Bus coupler
- Periphery modules
- Power modules
- Accessories

Bus coupler

With a bus coupler bus interface and power module is integrated to one casing. With the bus interface you get access to a subordinated bus system.
Via the integrated power module for power supply the bus interface is supplied as well as the electronic of the connected periphery modules.
The DC 24 power section supply for the linked periphery modules is established via a further connection.
By installing of up to 64 periphery modules at the bus coupler, these are electrically connected, this means these are assigned to the backplane bus, the electronic modules are power supplied and each periphery module is connected to the DC 24 V power section supply.

Periphery modules Each periphery module consists of a terminal and an electronic module.

Terminal module

Electronic module

Power module

[1] Terminal module
[2] Electronic module

The terminal module serves to carry the electronic module, contains the backplane bus with power supply for the electronic, the DC 24 V power section supply and the staircase-shaped terminal for wiring.
Additionally the terminal module has a locking system for fixing at a mounting rail.
By means of this locking system your FS200 may be assembled outside of your switchgear cabinet to be later mounted there as whole system.

The functionality of a FS200 periphery module is defined by the electronic module, which is mounted to the terminal module by a save sliding mechanism.
With an error the defective module may be exchanged for a functional module with standing installation.
By an integrated coding only the modules may be plugged, which may be combined.
At the front side there are LEDs for status indication.
For simple wiring each module shows a corresponding connection diagram at the front and at the side.

In the FS200 the power supply is established by power modules. These are either integrated to the bus coupler or may be installed between the periphery modules. Depending on the power module isolated areas of the DC 24 V power section supply may be defined and additionally the electronic power supply may be extended with 2A.
For better recognition the color of the power modules are contrasting to the periphery modules.

Accessories

Shield bus carrier

Bus cover

The shield bus carrier serves to carry the shield bus to connect cable shields.
Shield bus carriers, shield bus and shield fixings are not in the scope of delivery. They are only available as accessories.
The shield bus carrier is mounted underneath the terminal of the terminal module.
With a flat mounting rail for adaption to a flat mounting rail you may remove the spacer of the shield bus carrier.

With each bus coupler, to protect the backplane bus connectors, there is a mounted bus cover in the scope of delivery. You have to remove the bus cover of the bus coupler before mounting a FS200 module.
For the protection of the backplane bus connector you should always mount the bus cover at the last module of your system again.

Dimensions

Dimensions

 bus coupler

Dimensions periphery module

Dimensions electronic module

Dimensions in mm

Installation

Functional principle

Mounting terminal module

There is a locking lever at the top side of the terminal module. For mounting and de-mounting this locking lever is to turn upwards until this engages audible.
Now the module may be pulled forward.
For mounting plug the module to the module installed before and push the module to the mounting rail guided by the strips at the upper and lower side of the module.
The module is fixed to the mounting rail by pushing downwards the locking lever.
The modules may either separately be mounted to the mounting rail or as block. Here is to be considered that each locking lever is opened.

Mounting electronic module

For mounting between 2 modules and for the exchange of a defective electronic module, the electronic module may be pulled forward after pressing the unlocking lever at the lower side of the module.
For installation plug the electronic module guided by the strips at the lower side until this engages audible to the terminal module.

Mounting Proceeding

Mounting mounting rail

Mounting Head module (e.g. bus coupler)

The modules were directly be mounted to the mounting rail and so connected to the backplane bus and the power supply for the electronic and power section.
Up to 64 modules may be mounted. Please consider here that the sum current of the electronic power supply does not exceed the maximum value of 3 A . By means of the power module FS2-PS-AB10 the current of the electronic power supply may be expanded with 2 A . More about this may be found at "Wiring".

- Mount the mounting rail! Please consider that a clearance from the middle of the mounting rail of at least 80 mm above and 60 mm below, respectively 80 mm by deployment of shield bus carriers, exist.

- Start at the left side with the head module (e.g. bus coupler). For this turn both locking lever upwards, put the head module to the mounting rail and turn both locking lever downwards.
- Before mounting the periphery modules you have to remove the bus cover at the right side of the Head module by pulling it forward. Keep the cover for later mounting.

1

2

Mounting
periphery module

- Mount the periphery modules you want.

Clack

3

Mounting the bus cover

- After mounting the whole system, to protect the backplane bus connectors the bus cover may now be mounted at the last module

The shield bus carrier (available as accessory) serves to carry the shield bus to connect cable shields. The shield bus carrier is mounted underneath the terminal of the terminal module. With a flat mounting rail for adaption to a flat mounting rail you may remove the spacer of the shield bus carrier.

Mounting between 2 modules

With the mounting of a FS200 module respectively of a group of FS200 modules between two modules for mounting reasons you have always to remove the electronic module of the just mounted right module. After that it may be plugged again.
To mount the module put it to the gap between the both modules and push it, guided by the stripes at both sides, to the mounting rail.

With mounting respectively de-mounting of a module group you also have to remove the electronic module of the just mounted right module! After mounting it may be plugged again.
For mounting respectively de-mounting the locking lever of the modules of the block must be turned upwards.
To mount the group of modules put them to the gap between the both modules and push it, guided by the stripes at both sides, to the mounting rail.
After mounting the block turn each locking lever of the modules downwards.

Wiring

Standard wiring

[1] DC 24V Power section supply I/O area
[2] DC 24 V Electronic power supply bus coupler and I/O area

Note!

Power section and electronic power section supply are internally protected against higher voltage by fuses. The fuses are within the power module. If one fuse released, its electronic module must be exchanged!
It is recommended to externally protect the power section supply with a fast 10A fuse and the electronic power supply with a fast 4A fuse.

After PowerON of the FS200 the LEDs RUN respectively MF get on so far as the sum current does not exceed 3 A .
With a sum current greater than 3A the LEDs may not be activated.
Here the power module with the order number 007-1AB10 is to be placed between the peripheral modules. More concerning this may be found at the following page.

Deployment of the power modules

If the 10A for the power section supply is no longer sufficient, you may use the power module from ELCO with the order number FS2-PS-AB00. So you have also the possibility to define isolated groups.
The power module with the order number FS2-PS-AB10 is to be used if the 3 A for the electronic power supply at the backplane bus is no longer sufficient.
Additionally you get an isolated group for the DC 24 V power section supply with 10A.
By placing the power module FS2-PS-AB10 at the following backplane bus modules may be placed with a sum current of max. 2A. Afterwards the power module FS2-PS-AB10 is to be placed again.

[1] DC 24 V Power section supply I/O area (max. 10A)
[2] DC 24V Electronic power supply bus coupler and I/O area (max. 3A)
[3] DC 24V Electronic power supply I/O area (max. 2A)

Shield attachment To attach the shield the mounting of shield bus carriers are necessary.
The shield bus carrier (available as accessory) serves to carry the shield bus to connect cable shields.
The shield bus carrier is mounted underneath the terminal of the terminal module. With a flat mounting rail for adaption to a flat mounting rail you may remove the spacer of the shield bus carrier.
After mounting the shield bus carrier with the shield bus, the cables with the accordingly stripped cable screen may be attached and fixed by the shield clamp.

[1] Shield bus carrier
[2] Shield bus
[3] Shield clamp
[4] Cable shield

Trouble shooting

General

Sum current of the electronic power supply exceeded

Each module has the LEDs RUN and MF on its front side. Errors or incorrect modules may be located by means of these LEDs.
In the following illustrations flashing LEDs are marked by 嫁.

Behavior: After PowerON the RUN LED of each module is off and the MF LED of each module is sporadically on.
Reason: The maximum current for the electronic power supply is exceeded.
Remedy: As soon as the sum current of the electronic power supply is exceeded, always place the power module FS2-PS-AB10.
More concerning this may be found above at "Wiring".

Behavior: After PowerON the MF LED of one module respectively more modules flashes. The RUN LED remains off.
Reason: At this position a module is placed, which does not correspond to the configured module.
Remedy: Match configuration and hardware structure.

Module failure

Behavior: After PowerON the RUN LED flashes at one module. The RUN and MF LEDs of the following module are off. With all following modules the MF LED is on and the RUN LED is off.
Reason: The module on the right of the flashing module is defective.
Remedy: Replace the defective module.

Installation guidelines

General	The installation guidelines contain information about the interference free deployment of FS200. There is the description of the ways, interference may occur in your control, how you can make sure the electromagnetic digestibility (EMC), and how you manage the isolation.
What means	Electromagnetic digestibility (EMC) means the ability of an electrical device, to function error free in an electromagnetic environment without being interferenced res. without interferencing the environment.
EMC?	All FS200 components are developed for the deployment in hard industrial environments and fulfill high demands on the EMC. Nevertheless you should project an EMC planning before installing the components and take conceivable interference causes into account.
Possible	Electromagnetic interferences may interfere your control via different ways: interference causes
- Fields	
- I/O signal conductors	
- Bus system	
- Current supply	
- Protected earth conductor	

Depending on the spreading medium (lead bound or lead free) and the distance to the interference cause, interferences to your control occur by means of different coupling mechanisms.
One differs:

- galvanic coupling
- capacitive coupling
- inductive coupling
- radiant coupling

Basic rules for EMC

In the most times it is enough to take care of some elementary rules to guarantee the EMC. Please regard the following basic rules when installing your PLC.

- Take care of a correct area-wide grounding of the inactive metal parts when installing your components.
- Install a central connection between the ground and the protected earth conductor system.
- Connect all inactive metal extensive and impedance-low.
- Please try not to use aluminum parts. Aluminum is easily oxidizing and is therefore less suitable for grounding.
- When cabling, take care of the correct line routing.
- Organize your cabling in line groups (high voltage, current supply, signal and data lines).
- Always lay your high voltage lines and signal res. data lines in separate channels or bundles.
- Route the signal and data lines as near as possible beside ground areas (e.g. suspension bars, metal rails, tin cabinet).
- Proof the correct fixing of the lead isolation.
- Data lines must be laid isolated.
- Analog lines must be laid isolated. When transmitting signals with small amplitudes the one sided laying of the isolation may be favorable.
- Lay the line isolation extensively on an isolation/protected earth conductor rail directly after the cabinet entry and fix the isolation with cable clamps.
- Make sure that the isolation/protected earth conductor rail is connected impedance-low with the cabinet.
- Use metallic or metalized plug cases for isolated data lines.
- In special use cases you should appoint special EMC actions.
- Wire all inductivities with erase links, which are not addressed by the FS200 modules.
- For lightening cabinets you should prefer incandescent lamps and avoid luminescent lamps.
- Create a homogeneous reference potential and ground all electrical operating supplies when possible.
- Please take care for the targeted employment of the grounding actions. The grounding of the PLC is a protection and functionality activity.
- Connect installation parts and cabinets with the FS200 in star topology with the isolation/protected earth conductor system. So you avoid ground loops.
- If potential differences between installation parts and cabinets occur, lay sufficiently dimensioned potential compensation lines.

Isolation of conductors

Electrical, magnetically and electromagnetic interference fields are weakened by means of an isolation, one talks of absorption.
Via the isolation rail, that is connected conductive with the rack, interference currents are shunt via cable isolation to the ground. Hereby you have to make sure, that the connection to the protected earth conductor is impedance-low, because otherwise the interference currents may appear as interference cause.

When isolating cables you have to regard the following:

- If possible, use only cables with isolation tangle.
- The hiding power of the isolation should be higher than 80%.
- Normally you should always lay the isolation of cables on both sides. Only by means of the both-sided connection of the isolation you achieve high quality interference suppression in the higher frequency area.
Only as exception you may also lay the isolation one-sided. Then you only achieve the absorption of the lower frequencies. A one-sided isolation connection may be convenient, if:
- the conduction of a potential compensating line is not possible
- analog signals (some mV res. $\mu \mathrm{A}$) are transferred
- foil isolations (static isolations) are used.
- With data lines always use metallic or metalized plugs for serial couplings. Fix the isolation of the data line at the plug rack. Do not lay the isolation on the PIN 1 of the plug bar!
- At stationary operation it is convenient to strip the insulated cable interruption free and lay it on the isolation/protected earth conductor line.
- To fix the isolation tangles use cable clamps out of metal. The clamps must clasp the isolation extensively and have well contact.
- Lay the isolation on an isolation rail directly after the entry of the cable in the cabinet. Lead the isolation further on to the FS200 module and don't lay it on there again!

Please regard at installation!

At potential differences between the grounding points, there may be a compensation current via the isolation connected at both sides.
Remedy: Potential compensation line

General data

Conformity and approval		
Conformity	73/23/EWG	Low-voltage directive
CE	UL 508	Approval for USA and Canada
Approval	UL	-
others	Product is unleaded	
RoHs		

Protection of persons and device protection		
Type of protection	-	IP20
Electrical isolation	-	electrically isolated
to the field bus	-	electrically isolated
to the process level	EN 61131-2	-
Insulation resistance	-	AC / DC 50V, test voltage AC 500V
Insulation voltage to reference earth	against short circuit	
Inputs / outputs		
Protective measures		

Environmental conditions to EN 61131-2			
Climatic	EN 60068-2-14	$-25 \ldots+70^{\circ} \mathrm{C}$	
Storage / transport	EN 61131-2	$0 \ldots+60^{\circ} \mathrm{C}$	
Operation	EN 61131-2	$0 \ldots+60^{\circ} \mathrm{C}$	
Horizontal installation	EN 60068-2-30	RH1 (without condensation, rel. humidity 10 ... 95\%)	
Vertical installation	EN 61131-2	Degree of pollution 2	
Air humidity			
Pollution	EN 60068-2-6	1 G	
Mechanical	EN 60068-2-27	15 G	
Oscillation			

Mounting conditions		
Mounting place	-	In the control cabinet
Mounting position	-	Horizontal and vertical

EMC	Standard		Comment
Emitted interference	EN 61000-6-4		Class A (Industry area)
Noise immunity zone B	EN 61000-6-2		Industry area
		EN 61000-4-2	ESD Degree of severity 3, i.e. 8 kV at air discharge, 4 kV at contact discharge
		EN 61000-4-3	HF irradiation (casing) $80 \mathrm{MHz} \ldots 1000 \mathrm{MHz}, 10 \mathrm{~V} / \mathrm{m} 80 \% \mathrm{AM}(1 \mathrm{kHz})$
		EN 61000-4-6	$\begin{aligned} & \text { HF conducted } \\ & 150 \mathrm{kHz} \ldots 80 \mathrm{MHz}, 10 \mathrm{~V} / \mathrm{m} \\ & 80 \% \mathrm{AM}(1 \mathrm{kHz}) \\ & \hline \end{aligned}$
		EN 61000-4-4	Burst, degree of severity 3
		EN 61000-4-5	Surge, degree of severity 3

Chapter 2 Digital Input

Overview In this chapter you will find the description of the digital input modules of the System FS200 from ELCO.
Content Topic Page
Chapter 2 Digital Input. 2-1
ELCO FS2-DI-BB00 - DI 2xDC 24V 2-2
ELCO FS2-DI-BB50 - DI 2xDC 24V NPN 2-4
ELCO FS2-DI-BD00 - DI 4xDC 24V 2-6
ELCO FS2-DI-BD40 - DI 4xDC 24 V 3 wire 2-8
ELCO FS2-DI-BD50 - DI 4xDC 24V NPN 2-10
ELCO FS2-DI-BF00 - DI 8xDC 24V 2-12
ELCO FS2-DI-BF50 - DI 8xDC 24V NPN 2-14

ELCO FS2-DI-BB00 - DI 2xDC 24V

Description

The electronic module collects the binary control signals from the process level and transmits them isolated to the central bus system. It has 2 channels and their status is monitored via LEDs.

Properties

- 2 digital inputs, isolated to the backplane bus
- Suited for switches and approximate switches
- Status indication of the channels via LEDs also with de-activated electronic power supply

Structure

[1] Locking lever terminal module
[2] Labeling strip
[3] Backplane bus
[4] LED status indication
[5] DC 24V power section supply
[6] Electronic module
[7] Terminal module
[8] Locking lever electronic module
[9] Terminal

Status indication

LED	Color	Description		
RUN MF	green red	RUN	MF	
		\bullet	\circ	Bus communication is OK Module status is OK
	\bullet	\bullet	Bus communication is OK Module status reports an error	
		\circ	\bullet	Bus communication is not possible Module status reports an error
	\circ	\circ	Error at bus power supply	

on: • off: ○ blinks with 2 Hz :

Pin assignment
For wires with a cross section of $0.08 \mathrm{~mm}^{2}$ up to $1.5 \mathrm{~mm}^{2}$.

Pos.	Function	Type	Description
1	DI 0	I	Digital input DI 0
2	DC 24V	O	DC 24V for sensor
3	0 V	O	GND
4	---	---	not connected
5	DI 1	I	Digital input DI 1
6	DC 24V	O	DC 24V for sensor
7	0 V	O	GND
8	---	---	not connected

I: Input, O: Output

Technical data

Data	ELCO FS2-DI-BB00
Number of inputs	2
Nominate input voltage	DC $24 \mathrm{~V}(20.4 \ldots 28.8 \mathrm{~V})$
Signal voltage "0"	$0 \ldots 5 \mathrm{~V}$
Signal voltage "1"	$15 \ldots 30 \mathrm{~V}$
Current consumption 5 V 24 V	55 mA
Input filter time delay	---
Input current	3ms
Isolation	typ. 3mA (EN 61131-2, type 1)
Module ID	500 Veff (field voltage to the bus)
Bit-width in the process image	00019 F 82
Configurable	2bits
	no

ELCO FS2-DI-BB50 - DI 2xDC 24V NPN

Description

Properties

The electronic module collects the binary control signals from the process level and transmits them isolated to the central bus system.
It has 2 channels and their status is monitored via LEDs.
An input becomes active as soon as it is connected to ground.

- 2 digital inputs (N switching), isolated to the backplane bus
- Suited for switches and approximate switches
- Status indication of the channels via LEDs also with de-activated electronic power supply

Structure

[1] Locking lever terminal module
[2] Labeling strip
[3] Backplane bus
[4] LED status indication
[5] DC 24V power section supply
[6] Electronic module
[7] Terminal module
[8] Locking lever electronic module
[9] Terminal

Status indication

LED	Color	Description		
RUN MF	green red	RUN	MF	
		\bullet	\circ	Bus communication is OK Module status is OK
	\bullet	\bullet	Bus communication is OK Module status reports an error	
		\circ	\bullet	Bus communication is not possible Module status reports an error
	\circ	\circ	Error at bus power supply	

on: • off: ○ blinks with 2 Hz :

Pin assignment
For wires with a cross section of $0.08 \mathrm{~mm}^{2}$ up to $1.5 \mathrm{~mm}^{2}$.

Pos.	Function	Type	Description
1	DI 0	I	Digital input DI 0
2	DC 24V	O	DC 24V for sensor
3	0 V	O	GND
4	---	---	not connected
5	DI 1	I	Digital input DI 1
6	DC 24V	O	DC 24V for sensor
7	0 V	O	GND
8	---	---	not connected

I: Input, O: Output

Technical data

Data	ELCO FS2-DI-BB50
Number of inputs	2
Nominate input voltage	DC $24 \mathrm{~V}(20.4 \ldots 28.8 \mathrm{~V})$
Signal voltage "0"	$15 \ldots 30 \mathrm{~V}$
Signal voltage "1"	$0 \ldots 5 \mathrm{~V}$
Current consumption 5 V 24 V	60 mA
Input filter time delay	3ms
Input current	typ. 3mA (EN 61131-2, type 1)
Isolation	500 Veff (field voltage to the bus)
Module ID	0002 9F82
Bit-width in the process image	2 bits
Configurable	no

ELCO FS2-DI-BD00 - DI 4xDC 24V

Description

The electronic module collects the binary control signals from the process level and transmits them isolated to the central bus system. It has 4 channels and their status is monitored via LEDs.

Properties

- 4 digital inputs, isolated to the backplane bus
- Suited for switches and approximate switches
- Status indication of the channels via LEDs also with de-activated electronic power supply

Structure

[1] Locking lever terminal module
[2] Labeling strip
[3] Backplane bus
[4] LED status indication
[5] DC 24V power section supply
[6] Electronic module
[7] Terminal module
[8] Locking lever electronic module
[9] Terminal

Status indication

LED	Color	Description		
RUN MF	green red	RUN	MF	
		\bullet	\circ	Bus communication is OK Module status is OK
	\bullet	\bullet	Bus communication is OK Module status reports an error	
		\circ	\bullet	Bus communication is not possible Module status reports an error
	\circ	\circ	Error at bus power supply	

on: • off: ○ blinks with 2 Hz : 猄

Pin assignment
For wires with a cross section of $0.08 \mathrm{~mm}^{2}$ up to $1.5 \mathrm{~mm}^{2}$.

Pos.	Function	Type	Description
1	DI 0	I	Digital input DI 0
2	DC 24V	O	DC 24V for sensor
3	DI 2	I	Digital input DI 2
4	DC 24V	O	DC 24V for sensor
5	DI 1	I	Digital input DI 1
6	DC 24V	O	DC 24V for sensor
7	DI 3	I	Digital input DI 3
8	DC 24V	O	DC 24V for sensor

I: Input, O: Output

Technical data

Data	ELCO FS2-DI-BD00
Number of inputs	4
Nominate input voltage	DC $24 \mathrm{~V}(20.4 \ldots 28.8 \mathrm{~V})$
Signal voltage "0"	$0 \ldots 5 \mathrm{~V}$
Signal voltage "1"	$15 \ldots 30 \mathrm{~V}$
Current consumption 5 V 24 V	55 mA
Input filter time delay	3ms
Input current	typ. 3mA (EN 61131-2, type 1)
Isolation	500 Veff (field voltage to the bus)
Module ID	0003 9F84
Bit-width in the process image	4 bits
Configurable	no

ELCO FS2-DI-BD40 - DI 4xDC 24V 3 wire

Description

The electronic module collects the binary control signals from the process level and transmits them isolated to the central bus system. It has 4 channels and their status is monitored via LEDs.

Properties

- 4 digital inputs with 3 wire connection, isolated to the backplane bus
- Suited for switches and approximate switches
- Status indication of the channels via LEDs also with de-activated electronic power supply

Structure

[1] Locking lever terminal module
[2] Labeling strip
[3] Backplane bus
[4] LED status indication
[5] DC 24 V power section supply
[6] Electronic module
[7] Terminal module
[8] Locking lever electronic module
[9] Terminal

Status indication

LED	Color	Description		
$\begin{array}{\|l} \mathrm{RUN} \\ \mathrm{MF} \end{array}$	green red	RUN	MF	
		-	\bigcirc	Bus communication is OK Module status is OK
		-	-	Bus communication is OK Module status reports an error
		\bigcirc	-	Bus communication is not possible Module status reports an error
		\bigcirc	\bigcirc	Error at bus power supply
		为	\%	Error in parameterization (if parameterizable)
DI x	green	-	Digit	input is set

on: • off: ○ blinks with 2 Hz :

Pin assignment
For wires with a cross section of $0.08 \mathrm{~mm}^{2}$ up to $1.5 \mathrm{~mm}^{2}$.

Pos.	Function	Type	Description
1	DI 0	I	Digital input DI 0
2	DC 24V	O	DC 24V for sensor
3	0 V	O	GND
4	DI 2	I	Digital input DI 2
5	DI 1	I	Digital input DI 1
6	DC 24V	O	DC 24V for sensor
7	$0 V$	O	GND
8	DI 3	I	Digital input DI 3

I: Input, O: Output

Technical data

Data	ELCO FS2-DI-BD40
Number of inputs	4
Nominate input voltage	DC $24 \mathrm{~V}(20.4 \ldots 28.8 \mathrm{~V})$
Signal voltage "0"	$0 \ldots 5 \mathrm{~V}$
Signal voltage "1"	$15 \ldots 30 \mathrm{~V}$
Current consumption 5 V 24 V	55 mA
Input filter time delay	---
Input current	3ms
Isolation	500 mA (EN 61131-2, type 1)
Module ID	0008 9F84
Bit-width in the process image	4 bits
Configurable	no

ELCO FS2-DI-BD50 - DI 4xDC 24V NPN

Description

Properties

Structure

Status indication

The electronic module collects the binary control signals from the process level and transmits them isolated to the central bus system. It has 4 channels and their status is monitored via LEDs.
An input becomes active as soon as it is connected to ground.

- 4 digital inputs (N switching), isolated to the backplane bus
- Suited for switches and approximate switches
- Status indication of the channels via LEDs also with de-activated electronic power supply

[1] Locking lever terminal module
[2] Labeling strip
[3] Backplane bus
[4] LED status indication
[5] DC 24 V power section supply
[6] Electronic module
[7] Terminal module
[8] Locking lever electronic module
[9] Terminal

LED	Color	Description		
RUN MF	green red	RUN	MF	
		\bullet	\circ	Bus communication is OK Module status is OK
	\bullet	\bullet	Bus communication is OK Module status reports an error	
		\circ	\bullet	Bus communication is not possible Module status reports an error
	\circ	\circ	Error at bus power supply	

on: • off: ○ blinks with 2 Hz :

Pin assignment
For wires with a cross section of $0.08 \mathrm{~mm}^{2}$ up to $1.5 \mathrm{~mm}^{2}$.

Pos.	Function	Type	Description
1	DI 0	I	Digital input DI 0
2	0 V	O	GND
3	DI 2	I	Digital input DI 2
4	0 V	O	GND
5	DI 1	I	Digital input DI 1
6	$0 V$	O	GND
7	DI 3	I	Digital input DI 3
8	OV	O	GND

I: Input, O: Output

Technical data

Data	ELCO FS2-DI-BD50
Number of inputs	4
Nominate input voltage	DC 24V (20.4 ... 28.8V)
Signal voltage "0"	$15 \ldots 30 \mathrm{~V}$
Signal voltage "1"	$0 \ldots 5 \mathrm{~V}$
Current consumption 5 V 24 V	65 mA
Input filter time delay	3ms
Input current	typ. 3mA (EN 61131-2, type 1)
Isolation	500 Veff (field voltage to the bus)
Module ID	0004 9F84
Bit-width in the process image	4 bits
Configurable	no

ELCO FS2-DI-BF00 - DI 8xDC 24V

Description

The electronic module collects the binary control signals from the process level and transmits them isolated to the central bus system. It has 8 channels and their status is monitored via LEDs.

Properties

- 8 digital inputs, isolated to the backplane bus
- Suited for switches and approximate switches
- Status indication of the channels via LEDs also with de-activated electronic power supply

Structure

[1] Locking lever terminal module
[2] Labeling strip
[3] Backplane bus
[4] LED status indication
[5] DC 24 V power section supply
[6] Electronic module
[7] Terminal module
[8] Locking lever electronic module
[9] Terminal

Status indication

LED	Color	Description		
$\begin{array}{\|l} \hline \text { RUN } \\ \text { MF } \end{array}$	green red	RUN	MF	
		-	\bigcirc	Bus communication is OK Module status is OK
		-	-	Bus communication is OK Module status reports an error
		\bigcirc	-	Bus communication is not possible Module status reports an error
		\bigcirc	\bigcirc	Error at bus power supply
		为	\%	Error in parameterization (if parameterizable)
DI x	green	\bullet	Digita	input is set

on: • off: ○ blinks with 2 Hz :

Pin assignment
For wires with a cross section of $0.08 \mathrm{~mm}^{2}$ up to $1.5 \mathrm{~mm}^{2}$.

Pos.	Function	Type	Description
1	DI 0	I	Digital input DI 0
2	DI 2	I	Digital input DI 2
3	DI 4	।	Digital input DI 4
4	DI 6	I	Digital input DI 6
5	DI 1	I	Digital input DI 1
6	DI 3	I	Digital input DI 3
7	DI 5	I	Digital input DI 5
8	DI 7	I	Digital input DI 7

I: Input

Technical data

Data	ELCO FS2-DI-BF00
Number of inputs	8
Nominate input voltage	DC $24 \mathrm{~V}(20.4 \ldots 28.8 \mathrm{~V})$
Signal voltage "0"	$0 \ldots 5 \mathrm{~V}$
Signal voltage "1"	$15 \ldots 30 \mathrm{~V}$
Current consumption 5 V 24 V	60 mA
Input filter time delay	3ms
Input current	typ. 3mA (EN 61131-2, type 1)
Isolation	500 Veff (field voltage to the bus)
Module ID	0005 9FC1
Bit-width in the process image	8 bits
Configurable	no

ELCO FS2-DI-BF50 - DI 8xDC 24V NPN

Description

Properties

The electronic module collects the binary control signals from the process level and transmits them isolated to the central bus system. It has 8 channels and their status is monitored via LEDs.
An input becomes active as soon as it is connected to ground.

- 8 digital inputs (N switching), isolated to the backplane bus
- Suited for switches and approximate switches
- Status indication of the channels via LEDs also with de-activated electronic power supply

Structure

[1] Locking lever terminal module
[2] Labeling strip
[3] Backplane bus
[4] LED status indication
[5] DC 24V power section supply
[6] Electronic module
[7] Terminal module
[8] Locking lever electronic module
[9] Terminal

Status indication

LED	Color	Description		
RUN MF	green red	RUN	MF	
		\bullet	\circ	Bus communication is OK Module status is OK
	\bullet	\bullet	Bus communication is OK Module status reports an error	
		\circ	\bullet	Bus communication is not possible Module status reports an error
	\circ	\circ	Error at bus power supply	

on: • off: ○ blinks with 2 Hz :

Pin assignment
For wires with a cross section of $0.08 \mathrm{~mm}^{2}$ up to $1.5 \mathrm{~mm}^{2}$.

Pos.	Function	Type	Description
1	DI 0	I	Digital input DI 0
2	DI 2	I	Digital input DI 2
3	DI 4	।	Digital input DI 4
4	DI 6	I	Digital input DI 6
5	DI 1	I	Digital input DI 1
6	DI 3	I	Digital input DI 3
7	DI 5	I	Digital input DI 5
8	DI 7	I	Digital input DI 7

I: Input

Technical data

Data	ELCO FS2-DI-BF50
Number of inputs	8
Nominate input voltage	DC 24V (20.4 ... 28.8V)
Signal voltage "0"	15... 30V
Signal voltage "1"	$0 \ldots 5 \mathrm{~V}$
```Current consumption 5V 24V```	65 mA
Input filter time delay	3 ms
Input current	typ. 3mA (EN 61131-2, type 1)
Isolation	500 Veff (field voltage to the bus)
Module ID	0007 9FC1
Bit-width in the process image	8bits
Configurable	no

## Chapter 3 Digital Output

Overview The digital output modules of the FS200 will be found here.
Content Topic Page
Chapter 3 Digital Output ..... 3-1
ELCO FS2-DO-BB00 - DO 2xDC 24V 0.5A ..... 3-2
ELCO FS2-DO-BB20 - DO 2xDC 24V 2A ..... 3-4
ELCO FS2-DO-BB50 - DO 2xDC 24V 0.5A NPN ..... 3-6
ELCO FS2-DO-BD00 - DO 4xDC 24V 0.5A ..... 3-8
ELCO FS2-DO-BD20 - DO 4xDC 24V 2A ..... 3-10
ELCO FS2-DO-BD50 - DO 4xDC 24V 0.5A NPN ..... 3-12
ELCO FS2-DO-BF00 - DO 8xDC 24V 0.5A ..... 3-14
ELCO FS2-DO-BF50 - DO 8xDC 24V 0.5A NPN ..... 3-16
ELCO FS2-DO-HB10 - DO 2xRelay ..... 3-18

## ELCO FS2-DO-BB00 - DO 2xDC 24V 0.5A

## Description

## Properties

- 2 digital outputs, isolated to the backplane bus
- Status indication of the channels via LEDs


## Structure

Status indication


LED	Color	Description		
RUN MF	green red	RUN	MF	
		-	$\bigcirc$	Bus communication is OK Module status is OK
		$\bullet$	$\bullet$	Bus communication is OK   Module status reports an error with overload, short circuit or overheat
		$\bigcirc$	$\bullet$	Bus communication is not possible Module status reports an error with overload, short circuit or overheat
		$\bigcirc$	$\bigcirc$	Error at bus power supply
		为	为	Error in parameterization (if parameterizable)
DO x	green	$\bullet$	Digit	output is set

[^0]Pin assignment
For wires with a cross section of $0.08 \mathrm{~mm}^{2}$ up to $1.5 \mathrm{~mm}^{2}$.


Pos.	Function	Type	Description
1	DO 0	O	Digital output DO 0
2	DC 24V	O	DC 24V
3	0 V	O	GND for actuator
4	---	---	not connected
5	DO 1	O	Digital output DO 1
6	DC 24V	O	DC 24V
7	0 V	O	GND for actuator
8	---	---	not connected

O: Output

Technical data

Data	ELCO FS2-DO-BB00
Number of outputs	2
Nominal load voltage	DC $24 \mathrm{~V}(20.4 \ldots 28.8 \mathrm{~V})$
Current consumption   5 V   24 V	55 mA
Isolation	$5 \mathrm{~mA}+$ load
Load	500 Veff (field voltage to the bus)
Output current (per channel)	resistive, inductive or lamp load
Switch rate   for resistive load   for ind. load (IEC947-5-1, DC13)   for lamp load	max. 1 kHz   max. 0.5 Hz   max. 10 Hz
Module ID	$0101 \mathrm{AF90}$
Bit-width in the process image	2 lits
Configurable	no

## ELCO FS2-DO-BB20 - DO 2xDC 24V 2A

## Description

The electronic module accepts binary control signals from the central bus system and transfers them to the process level via outputs. It has 2 channels and their status is monitored via LEDs.

## Properties

- 2 digital 2 A outputs, isolated to the backplane bus
- Status indication of the channels via LEDs


## Structure

## Status indication



LED	Color	Description		
RUN   MF	green   red	RUN	MF	
		$\bullet$	$\circ$	Bus communication is OK   Module status is OK
	$\bullet$	$\bullet$	Bus communication is OK   Module status reports an error with   overload, short circuit or overheat	
		$\bullet$	$\bullet$	Bus communication is not possible   Module status reports an error with   overload, short circuit or overheat
		$\circ$	$\circ$	Error at bus power supply

on: • off: ○ blinks with 2 Hz :

Pin assignment
For wires with a cross section of $0.08 \mathrm{~mm}^{2}$ up to $1.5 \mathrm{~mm}^{2}$.


Pos.	Function	Type	Description
1	DO 0	O	Digital output DO 0
2	DC 24V	O	DC 24V
3	0 V	O	GND for actuator
4	---	---	not connected
5	DO 1	O	Digital output DO 1
6	DC 24V	O	DC 24V
7	0 V	O	GND for actuator
8	---	---	not connected

O: Output

Technical data

Data	ELCO FS2-DO-BB2O
Number of outputs	2
Nominal load voltage	DC $24 \mathrm{~V}(20.4 \ldots 28.8 \mathrm{~V})$
Current consumption   5 V   24 V	55 mA
Isolation	5 mA + load
Load	500 Veff (field voltage to the bus)
Output current (per channel)	resistive, inductive or lamp load
Switch rate   for resistive load   for ind. load (IEC947-5-1, DC13)   for lamp load	max. 2A (short-circuit proofed)
module ID	max. 0.5 Hz
max. 10Hz	

## ELCO FS2-DO-BB50 - DO 2xDC 24V 0.5A NPN

## Description

Properties
The electronic module accepts binary control signals from the central bus system and transfers them to the process level via outputs.
It has 2 channels connected to the power supply, which operate as lowside switch and their status is monitored via LEDs. Low-side switches are suited to switch grounds. With a short circuit between switch line and ground the load is activated but the power supply is not influenced.

- 2 digital low-side outputs, isolated to the backplane bus
- Status indication of the channels via LEDs


## Structure


[1] Locking lever terminal module
[2] Labeling strip
[3] Backplane bus
[4] LED status indication
[5] DC 24 V power section supply
[6] Electronic module
[7] Terminal module
[8] Locking lever electronic module
[9] Terminal

Status indication


LED	Color	Description		
RUN   MF	green   red	RUN	MF	
		$\bullet$	$\circ$	Bus communication is OK   Module status is OK
	$\bullet$	$\bullet$	Bus communication is OK   Module status reports an error with   overload, short circuit or overheat	
		$\circ$	$\bullet$	Bus communication is not possible   Module status reports an error with   overload, short circuit or overheat
		$\circ$	$\circ$	Error at bus power supply

on: • off: ○ blinks with 2 Hz : 嫁

Pin assignment
For wires with a cross section of $0.08 \mathrm{~mm}^{2}$ up to $1.5 \mathrm{~mm}^{2}$.


Pos.	Function	Type	Description
1	DO 0	O	Digital output DO 0
2	DC 24V	O	DC 24V for actuator
3	$0 V$	O	GND
4	---	---	not connected
5	DO 1	O	Digital output DO 1
6	DC 24V	O	DC 24V for actuator
7	0 V	O	GND
8	---	---	not connected

O: Output

Technical data

Data	ELCO FS2-DO-BB50
Number of outputs	2
Nominal load voltage	DC $24 \mathrm{~V}(20.4 \ldots 28.8 \mathrm{~V})$
Current consumption   5 V	60 mA
24 V	

## ELCO FS2-DO-BD00 - DO 4xDC 24V 0.5A

## Description

## Properties

- 4 digital outputs, isolated to the backplane bus
- Status indication of the channels via LEDs


## Structure

Status indication


LED	Color	Description		
RUN   MF	greenred	RUN	MF	
		-	$\bigcirc$	Bus communication is OK Module status is OK
		$\bullet$	$\bullet$	Bus communication is OK   Module status reports an error with overload, short circuit or overheat
		$\bigcirc$	$\bullet$	Bus communication is not possible Module status reports an error with overload, short circuit or overheat
		$\bigcirc$	$\bigcirc$	Error at bus power supply
		为	滐	Error in parameterization (if parameterizable)
DO x	green	$\bullet$	Digital output is set	

[^1]Pin assignment
For wires with a cross section of $0.08 \mathrm{~mm}^{2}$ up to $1.5 \mathrm{~mm}^{2}$.


Pos.	Function	Type	Description
1	DO 0	O	Digital output DO 0
2	0 O	O	GND for actuator DO 0
3	DO 2	O	Digital output DO 2
4	OV	O	GND for actuator DO 2
5	DO 1	O	Digital output DO 1
6	OV	O	GND for actuator DO 1
7	DO 3	O	Digital output DO 3
8	OV	O	GND for actuator DO 3

O: Output

Technical data

Data	ELCO FS2-DO-BD00
Number of outputs	4
Nominal load voltage	DC $24 \mathrm{~V}(20.4 \ldots 28.8 \mathrm{~V})$
Current consumption   5 V   24 V	55 mA
Isolation	$10 \mathrm{~mA}+$ load
Load	500 Veff (field voltage to the bus)
Output current (per channel)	resistive, inductive or lamp load
Switch rate   for resistive load   for ind. load (IEC947-5-1, DC13)   for lamp load	max. 1 kHz   max. 0.5 Hz   max. 10 Hz
Module ID	0104 AFAO
Bit-width in the process image	4 bits
Configurable	no

## ELCO FS2-DO-BD20 - DO 4xDC 24V 2A

## Description

## Properties

- 4 digital 2A outputs, isolated to the backplane bus
- Status indication of the channels via LEDs


## Structure

## Status indication



LED	Color	Description		
RUN   MF	green   red	RUN	MF	
		$\bullet$	$\circ$	Bus communication is OK   Module status is OK
		$\bullet$	$\bullet$	Bus communication is OK   Module status reports an error with   overload, short circuit or overheat
		$\circ$	$\bullet$	Bus communication is not possible   Module status reports an error with   overload, short circuit or overheat
		$\circ$	$\circ$	Error at bus power supply

on: • off: ○ blinks with 2 Hz : 淙

Pin assignment
For wires with a cross section of $0.08 \mathrm{~mm}^{2}$ up to $1.5 \mathrm{~mm}^{2}$.


Pos.	Function	Type	Description
1	DO 0	O	Digital output DO 0
2	0 V	O	GND for actuator DO 0
3	DO 2	O	Digital output DO 2
4	OV	O	GND for actuator DO 2
5	DO 1	O	Digital output DO 1
6	OV	O	GND for actuator DO 1
7	DO 3	O	Digital output DO 3
8	OV	O	GND for actuator DO 3

O: Output

Technical data

Data	ELCO FS2-DO-BD20
Number of outputs	4
Nominal load voltage	DC $24 \mathrm{~V}(20.4 \ldots 28.8 \mathrm{~V})$
Current consumption   5 V   24 V	55 mA
Isolation	$10 \mathrm{~mA}+$ load
Load	500 Veff (field voltage to the bus)
Output current (per channel)	resistive, inductive or lamp load
Switch rate   for resistive load   for ind. load (IEC947-5-1, DC13)   for lamp load	max. 1kHz
max. 0.5 Hz	
module ID	0108 AFAO
Bit-width in the process image	4 bits
Configurable	

## ELCO FS2-DO-BD50 - DO 4xDC 24V 0.5A NPN

## Description

- 4 digital low-side outputs, isolated to the backplane bus
- Status indication of the channels via LEDs


## Structure


[1] Locking lever terminal module
[2] Labeling strip
[3] Backplane bus
[4] LED status indication
[5] DC 24 V power section supply
[6] Electronic module
[7] Terminal module
[8] Locking lever electronic module
[9] Terminal

Status indication


LED	Color	Description		
RUN   MF	green   red	RUN	MF	
		$\bullet$	$\circ$	Bus communication is OK   Module status is OK
	$\bullet$	$\bullet$	Bus communication is OK   Module status reports an error with   overload, short circuit or overheat	
		$\circ$	$\bullet$	Bus communication is not possible   Module status reports an error with   overload, short circuit or overheat
		$\circ$	$\circ$	Error at bus power supply

on: • off: ○ blinks with 2 Hz : 嫁

Pin assignment
For wires with a cross section of $0.08 \mathrm{~mm}^{2}$ up to $1.5 \mathrm{~mm}^{2}$.


Pos.	Function	Type	Description
1	DO 0	O	Digital output DO 0
2	DC 24V	O	DC 24V for actuator DO 0
3	DO 2	O	Digital output DO 2
4	DC 24V	O	DC 24V for actuator DO 2
5	DO 1	O	Digital output DO 1
6	DC 24V	O	DC 24V for actuator DO 1
7	DO 3	O	Digital output DO 3
8	DC 24V	O	DC 24V for actuator DO 3

O: Output

Technical data

Data	ELCO FS2-DO-BD50
Number of outputs	4
Nominal load voltage	DC $24 \mathrm{~V}(20.4 \ldots 28.8 \mathrm{~V})$
Current consumption   5 V   24 V	65 mA
Isolation	$5 \mathrm{~mA}+$ load
Load	500 Veff (field voltage to the bus)
Output current (per channel)	resistive, inductive or lamp load
Switch rate   for resistive load   for ind. load (IEC947-5-1, DC13)   for lamp load	max. 1 kHz   max. 0.5 Hz   max. 10 Hz
Module ID	$0105 \mathrm{AFA0}$
Bit-width in the process image	4 bits
Configurable	no

## ELCO FS2-DO-BF00 - DO 8xDC 24V 0.5A

## Description

The electronic module accepts binary control signals from the central bus system and transfers them to the process level via outputs. It has 8 channels and their status is monitored via LEDs.

## Properties

- 8 digital outputs, isolated to the backplane bus
- Status indication of the channels via LEDs


## Structure

Status indication


LED	Color	Description		
$\begin{array}{\|l} \hline \text { RUN } \\ \text { MF } \end{array}$	green red	RUN	MF	
		-	$\bigcirc$	Bus communication is OK Module status is OK
		-	-	Bus communication is OK   Module status reports an error with overload, short circuit or overheat
		$\bigcirc$	$\bullet$	Bus communication is not possible Module status reports an error with overload, short circuit or overheat
		$\bigcirc$	$\bigcirc$	Error at bus power supply
		为	浐	Error in parameterization (if parameterizable)
DO x	green	$\bullet$	Digital output is set	

[^2]Pin assignment
For wires with a cross section of $0.08 \mathrm{~mm}^{2}$ up to $1.5 \mathrm{~mm}^{2}$.


Pos.	Function	Type	Description
1	DO 0	O	Digital output DO 0
2	DO 2	O	Digital output DO 2
3	DO 4	O	Digital output DO 4
4	DO 6	O	Digital output DO 6
5	DO 1	O	Digital output DO 1
6	DO 3	O	Digital output DO 3
7	DO 5	O	Digital output DO 5
8	DO 7	O	Digital output DO 7

O: Output

Technical data

Data	ELCO FS2-DO-BF00
Number of outputs	8
Nominal load voltage	DC $24 \mathrm{~V}(20.4 \ldots 28.8 \mathrm{~V})$
Current consumption   5 V   24 V	65 mA
Isolation	$15 \mathrm{~mA}+$ load
Load	500 Veff (field voltage to the bus)
Output current (per channel)	resistive, inductive or lamp load
Switch rate   for resistive load   for ind. load (IEC947-5-1, DC13)   for lamp load	max. 1 kHz   max. 0.5 Hz   max. 10 Hz
Module ID	0106 AFC 8
Bit-width in the process image	8 bits
Configurable	no

## ELCO FS2-DO-BF50 - DO 8xDC 24V 0.5A NPN

## Description

The electronic module accepts binary control signals from the central bus system and transfers them to the process level via outputs.
It has 8 channels connected to the power supply, which operate as lowside switch and their status is monitored via LEDs. Low-side switches are suited to switch grounds. With a short circuit between switch line and ground the load is activated but the power supply is not influenced.

Properties

- 8 digital low-side outputs, isolated to the backplane bus
- Status indication of the channels via LEDs


## Structure


[1] Locking lever terminal module
[2] Labeling strip
[3] Backplane bus
[4] LED status indication
[5] DC 24 V power section supply
[6] Electronic module
[7] Terminal module
[8] Locking lever electronic module
[9] Terminal

Status indication


LED	Color	Description		
RUN   MF	green   red	RUN	MF	
		$\bullet$	$\circ$	Bus communication is OK   Module status is OK
	$\bullet$	$\bullet$	Bus communication is OK   Module status reports an error with   overload, short circuit or overheat	
		$\circ$	$\bullet$	Bus communication is not possible   Module status reports an error with   overload, short circuit or overheat
		$\circ$	$\circ$	Error at bus power supply

on: • off: ○ blinks with 2 Hz :

Pin assignment
For wires with a cross section of $0.08 \mathrm{~mm}^{2}$ up to $1.5 \mathrm{~mm}^{2}$.


Pos.	Function	Type	Description
1	DO 0	O	Digital output DO 0
2	DO 2	O	Digital output DO 2
3	DO 4	O	Digital output DO 4
4	DO 6	O	Digital output DO 6
5	DO 1	O	Digital output DO 1
6	DO 3	O	Digital output DO 3
7	DO 5	O	Digital output DO 5
8	DO 7	O	Digital output DO 7

O: Output

Technical data

Data	ELCO FS2-DO-BF50
Number of outputs	8
Nominal load voltage	DC $24 \mathrm{~V}(20.4 \ldots 28.8 \mathrm{~V})$
Current consumption   5 V   24 V	70 mA
Isolation	$10 \mathrm{~mA}+$ load
Load	500 Veff (field voltage to the bus)
Output current (per channel)	resistive, inductive or lamp load
Switch rate   for resistive load   for ind. load (IEC947-5-1, DC13)   for lamp load	max. 1 kHz   max. 0.5 Hz   max. 10 Hz
Module ID	0107 AFC 8
Bit-width in the process image	8 bits
Configurable	no

## ELCO FS2-DO-HB10 - DO 2xRelay

## Description

## Properties

The electronic module accepts binary control signals from the central bus system and transfers them to the process level via relay outputs.
It has 2 channels that operate as switches and the status of each channel is monitored via LEDs.

- 2 relay outputs, isolated to the backplane bus
- DC 30V / AC 230V, 3A
- Status indication of the channels via LEDs


## Structure


[1] Locking lever terminal module
[2] Labeling strip
[3] Backplane bus
[4] LED status indication
[5] DC 24V power section supply
[6] Electronic module
[7] Terminal module
[8] Locking lever electronic module
[9] Terminal

Status indication


LED	Color	Description		
RUN   MF	green   red	RUN	MF	
		$\bullet$	$\circ$	Bus communication is OK   Module status is OK
		$\bullet$	$\bullet$	Bus communication is OK   Module status reports an error
		$\circ$	$\bullet$	Bus communication is not possible   Module status reports an error
	$\circ$	$\circ$	Error at bus power supply	

on: • off: ○ blinks with 2 Hz :

Pin assignment
For wires with a cross section of $0.08 \mathrm{~mm}^{2}$ up to $1.5 \mathrm{~mm}^{2}$.


Pos.	Function	Type	Description
1	DO 0	O	Relay output DO 0
2	---	---	not connected
3	DO 1	O	Relay output DO 1
4	---	---	not connected
5	DO 0	O	Relay output DO 0
6	---	---	not connected
7	DO 1	O	Relay output DO 1
8	---	---	not connected

O: Output

## Maximum load



Service life


Technical data

Data	ELCO FS2-DO-HB10
Number of outputs	2 via relay
Nominal load voltage	AC $230 \mathrm{~V} / \mathrm{DC} 30 \mathrm{~V}$
Current consumption   5 V   24 V	55 mA
Isolation	---
Load	500 Veff (field voltage to the bus)
Output current (per channel)	resistive, inductive or lamp load
Switch rate	max. 3A (short-circuit proofed)
Module ID	max. 10Hz
Bit-width in the process image	0109 AF90
Configurable	2 bits

## Chapter 4 Analog Input

## Overview <br> After the introduction to the analog input modules and the list of the measuring ranges the description of the analog input modules of the FS200 will be found here.

Content Topic Page
Chapter 4 Analog Input ..... 4-1
General ..... 4-2
Analog value ..... 4-3
Measuring ranges ..... 4-4
ELCO FS2-AI-BB30 - AI 2x12Bit 0...10V ..... 4-9
ELCO FS2-AI-BB40 - AI $2 \times 12$ Bit 0(4)...20mA ..... 4-13
ELCO FS2-AI-BB90 - Al $2 \times 16$ Bit TC ..... 4-17
ELCO FS2-AI-BD30 - Al 4x12Bit 0...10V. ..... 4-26
ELCO FS2-AI-BD40 - Al 4x12Bit 0(4)...20mA ..... 4-30
ELCO FS2-AI-BD80 - AI 4x16Bit R/RTD ..... 4-34

## General

## Cables for analog signals

Connecting sensors

For analog signals you should use screened cables to reduce interference. The cable screening should be grounded at both ends. If there are differences in the potential between the cable ends, there may occur a potential compensating current that could disturb the analog signals. In this case you should ground the cable screening only at one end.

Depending on the module the following sensors may be connected to the analog input modules:

- Current sensor
- Voltage sensor
- Resistance-type sensors
- Temperature sensors


## Note!

Please take care of the correct polarity when installing the sensors! Please install short circuits at non-used inputs by connecting the positive contact with the channel ground of the according channel.

The modules may be parameterized by hardware configuration respectively at run time by means of SFCs.

Diagnostic functions

The modules have diagnostics capability. The following errors can release a diagnostic:

- Error in parameterization
- Measuring range over-/underflow
- Wire break


## Analog value

Representation of analog values

Analog values are exclusively processed in a binary format. For this the analog module transforms every process signal into a digital value and transfers this as word.

Resolution	Analog value															
	High byte (byte 0)								Low byte (byte 1)							
Bit number	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Value	SG	$2^{14}$	$2^{13}$	$2^{12}$	$2^{11}$	$2^{10}$	$2^{9}$	$2^{8}$	$2^{7}$	$2^{6}$	$2^{5}$	$2^{4}$	$2^{3}$	$2^{2}$	$2^{1}$	$2^{0}$
12bit + sign	SG	Measuring value												0	0	0
15bit + sign	SG	Measuring value														

Resolution With a resolution of 12bit plus sign bit, the not used low value positions (3bits) are filled with " 0 ".

Sign bit (SG) The algebraic sign bit is represented by bit 15. Here it is essential:
Bit $15=" 0 " \rightarrow$ positive value
Bit $15=" 1 " \rightarrow$ negative value

Behavior at error
As soon as a measured value exceeds the overdrive region respectively falls below the underdrive region, the following value is issued:
Measuring value > end of overdrive region: 32767 (7FFFh)
Measuring value < end of underdrive region: -32768 (8000h)
At a parameterization error the value 32767 (7FFFh) is issued.

## Measuring ranges

## General

In the following there are the measuring ranges with function number listed, which were supported by the corresponding analog module.
The here listed formulas allow you to transform an evaluated measuring value (digital value) to a value assigned to the measuring range and vice versa.
Voltage

Meas. range (funct. no.)	Voltage (U)	Decimal (D)	Hex	Range	Formulas
$-80 \ldots 80 \mathrm{mV}$   Siemens S7 format (11h)	94.07 mV	32511	7EFFh	overrange	$D=27648 \cdot \frac{U}{80}$
	80 mV	27648	6C00h	nominal range	
	OV	0	0000h		$U=D \cdot \frac{80}{070}$
	-80mV	-27648	9400h		
	$-94.07 \mathrm{mV}$	-32512	8100h	underrange	U 27648
$-80 \ldots 80 \mathrm{mV}$   Siemens S5 format (12h)	100 mV	20480	5000h	overrange	$D=16384 \cdot \frac{U}{80}$
	80 mV	16384	4000h	nominal range	
	OV	0	0000h		${ }^{80}$
	-80mV	-16384	C000h		$U=D \cdot \frac{80}{100}$
	-100mV	-20480	B000h	underrange	
$0 \text {... 10V }$   Siemens S7 format (10h)	11.76 V	32511	7EFFh	overrange	$D=27648 \cdot \frac{U}{10}$
	10 V	27648	6C00h	nominal range	
	5 V	13824	3600h		
	OV	0	0000h		$U=D \cdot \frac{10}{27648}$
	-1.76V	-4864	ED00h	underrange	
$0 \text {... 10V }$   Siemens S5 format (20h)	12.5 V	20480	5000h	overrange	$D=16384 \cdot \frac{U}{10}$
	10 V	16384	4000h	nominal range	
	5 V	8192	2000h		
	OV	0	0000h		$U=D \cdot \frac{10}{16384}$
	-2V	-3277	F333h	underrange	

Current

Meas. range (funct. no.)	Current (1)	Decimal (D)	Hex	Range	Formulas
0 ... 20 mA Siemens S7 format (31h)	23.52 mA	32511	7EFFh	overrange	$D=27648 \cdot \frac{I}{20}$
	20 mA	27648	6 COOh	nominal range	
	10 mA	13824	3600h		
	0mA	0	0000h		$I=D \cdot \frac{20}{27648}$
	$-3.52 \mathrm{~mA}$	-4864	EDOOh	underrange	
0 ... 20 mA Siemens S5 format (41h)	25.00 mA	20480	5000h	overrange	$\begin{aligned} & D=16384 \cdot \frac{I}{20} \\ & I=D \cdot \frac{20}{16384} \end{aligned}$
	20 mA	16384	4000h	nominal range	
	10 mA	8192	2000h		
	0 mA	0	0000h		
	$-4.00 \mathrm{~mA}$	-3277	F333h	underrange	
4 ... 20 mA Siemens S7 format (30h)	22.81 mA	32511	7EFFh	overrange	$\begin{aligned} & D=27648 \cdot \frac{I-4}{16} \\ & I=D \cdot \frac{16}{27648}+4 \end{aligned}$
	20 mA	27648	6C00h	nominal range	
	12 mA	13824	3600h		
	4 mA	0	0000h		
	1.19 mA	-4864	ED00h	underrange	
4 ... 20mA Siemens S5 format (40h)	24.00 mA	20480	5000h	overrange	$\begin{aligned} & D=16384 \cdot \frac{I-4}{16} \\ & I=D \cdot \frac{16}{16384}+4 \end{aligned}$
	20 mA	16384	4000h	nominal range	
	12 mA	8192	2000h		
	0.8 mA	-3277	F333h	underrange	

Resistance

Measuring range (function number)	Measuring value	Signal range	Range
2 wire: PT100 (50h)	$+1000^{\circ} \mathrm{C}$	+10000	overrange
	$-200 \ldots+850^{\circ} \mathrm{C}$	-2000 ... +8500	nominal range
	$-243^{\circ} \mathrm{C}$	-2430	underrange
2 wire: PT1000 (51h)	$+100^{\circ} \mathrm{C}$	+10000	overrange
	$-200 \ldots+850^{\circ} \mathrm{C}$	-2000 ... +8500	nominal range
	$-243{ }^{\circ} \mathrm{C}$	-2430	underrange
$\begin{aligned} & 2 \text { wire: NI100 } \\ & (52 h) \end{aligned}$	$+295^{\circ} \mathrm{C}$	+2950	overrange
	$-60 \ldots+250^{\circ} \mathrm{C}$	-600 ... +2500	nominal range
	$-105^{\circ} \mathrm{C}$	-1050	underrange
$\begin{gathered} 2 \text { wire: NI1000 } \\ (53 \mathrm{~h}) \end{gathered}$	$+295^{\circ} \mathrm{C}$	+2950	overrange
	-60 ... $+250^{\circ} \mathrm{C}$	-600 ... +2500	nominal range
	$-105^{\circ} \mathrm{C}$	-1050	underrange
3 wire: PT100 (58h)	$+1000^{\circ} \mathrm{C}$	+10000	overrange
	$-200 \ldots+850^{\circ} \mathrm{C}$	-2000 ... +8500	nominal range
	$-243^{\circ} \mathrm{C}$	-2430	underrange
3 wire: PT1000 (59h)	$+1000^{\circ} \mathrm{C}$	+10000	overrange
	$-200 \ldots+850^{\circ} \mathrm{C}$	-2000 ... +8500	nominal range
	$-243{ }^{\circ} \mathrm{C}$	-2430	underrange
$\begin{gathered} 3 \text { wire: NI100 } \\ (5 \mathrm{Ah}) \end{gathered}$	$+295^{\circ} \mathrm{C}$	+2950	overrange
	-60 ... $+250^{\circ} \mathrm{C}$	-600 ... +2500	nominal range
	$-105^{\circ} \mathrm{C}$	-1050	underrange
3 wire: NI1000 (5Bh)	$+295^{\circ} \mathrm{C}$	+2950	overrange
	$-60 \ldots+250^{\circ} \mathrm{C}$	-600 ... +2500	nominal range
	$-105^{\circ} \mathrm{C}$	-1050	underrange
4 wire: PT100 (60h)	$+1000^{\circ} \mathrm{C}$	+10000	overrange
	$-200 \ldots+850^{\circ} \mathrm{C}$	-2000 ... +8500	nominal range
	$-243{ }^{\circ} \mathrm{C}$	-2430	underrange
4 wire: PT1000 (61h)	$+1000^{\circ} \mathrm{C}$	+10000	overrange
	$-200 \ldots+850^{\circ} \mathrm{C}$	-2000 ... +8500	nominal range
	$-243{ }^{\circ} \mathrm{C}$	-2430	underrange
4 wire: NI100 (62h)	$+295^{\circ} \mathrm{C}$	+2950	overrange
	$-60 \ldots+250^{\circ} \mathrm{C}$	-600 ... +2500	nominal range
	$-105^{\circ} \mathrm{C}$	-1050	underrange
4 wire: NI1000 (63h)	$+295^{\circ} \mathrm{C}$	+2950	overrange
	-60 ... $+250^{\circ} \mathrm{C}$	-600 ... +2500	nominal range
	$-105^{\circ} \mathrm{C}$	-1050	underrange
2 wire: $0 \ldots 60 \Omega$ (70h)	---	---	overrange
	0...60ת	0 ... 32767	nominal range
	---	---	underrange
$\begin{gathered} 2 \text { wire: } 0 \ldots 600 \Omega \\ (71 \mathrm{~h}) \end{gathered}$	---	---	overrange
	0...600 ${ }^{\text {a }}$	0 ... 32767	nominal range
	---	---	underrange
2 wire: $0 \ldots 3000 \Omega$ (72h)	---	---	overrange
	0...3000 ${ }^{\text {a }}$	0 ... 32767	nominal range
	---	---	underrange

... continue resistance

Measuring range (function number)	Measuring value	Signal range	Range
$\begin{gathered} 3 \text { wire: } 0 \ldots . .60 \Omega \\ \quad(78 \mathrm{~h}) \end{gathered}$	---	---	overrange
	$0 \ldots 60 \Omega$	0 ... 32767	nominal range
	---	---	underrange
$\begin{gathered} 3 \text { wire: } 0 \ldots . . .600 \Omega \\ (79 \mathrm{~h}) \end{gathered}$	---	---	overrange
	$0 \ldots 600 \Omega$	0 ... 32767	nominal range
	---	---	underrange
$\begin{gathered} 3 \text { wire: } 0 \ldots 3000 \Omega \\ (7 \mathrm{Ah}) \end{gathered}$	---	---	overrange
	$0 \ldots 3000 \Omega$	0 ... 32767	nominal range
	---	---	underrange
$\begin{gathered} 4 \text { wire: } 0 \ldots 60 \Omega \\ (80 \mathrm{~h}) \end{gathered}$	---	---	overrange
	$0 \ldots 60 \Omega$	0 ... 32767	nominal range
	---	---	underrange
$\begin{aligned} & 4 \text { wire: } 0 \ldots . . .600 \Omega \\ & \quad(81 \mathrm{~h}) \end{aligned}$	---	---	overrange
	$0 \ldots 600 \Omega$	$0 \ldots 32767$	nominal range
	---	---	underrange
$\begin{aligned} & 4 \text { wire: } 0 \ldots 3000 \Omega \\ & (82 \mathrm{~h}) \end{aligned}$	---	---	overrange
	$0 \ldots 3000 \Omega$	0 ... 32767	nominal range
	---	---	underrange
$\begin{aligned} & 2 \text { wire: } 0 \ldots 60 \Omega \\ & \quad(90 \mathrm{~h}) \end{aligned}$	---	---	overrange
	$0 \ldots 60 \Omega$	$0 \ldots 6000$	nominal range
	---	---	underrange
$\begin{aligned} & 2 \text { wire: } 0 \ldots 600 \Omega \\ & (91 \mathrm{~h}) \end{aligned}$	---	---	overrange
	$0 \ldots 600 \Omega$	0 ... 6000	nominal range
	---	---	underrange
$\begin{aligned} & 2 \text { wire : } 0 \ldots 3000 \Omega \\ & \quad(92 \mathrm{~h}) \end{aligned}$	---	---	overrange
	$0 \ldots 3000 \Omega$	0 ... 30000	nominal range
	---	---	underrange
$\begin{gathered} 3 \text { wire: } 0 \ldots . .60 \Omega \\ \quad(98 \mathrm{~h}) \end{gathered}$	---	---	overrange
	$0 \ldots 60 \Omega$	$0 \ldots 6000$	nominal range
	---	---	underrange
$\begin{aligned} & 3 \text { wire: } 0 \ldots . . .600 \Omega \\ & \quad(99 \mathrm{~h}) \end{aligned}$	---	---	overrange
	$0 \ldots 600 \Omega$	$0 \ldots 6000$	nominal range
	---	---	underrange
3 wire: 0 ... $3000 \Omega$   (9Ah)	---	---	overrange
	$0 \ldots 3000 \Omega$	0 ... 30000	nominal range
	---	---	underrange
4 wire: 0 ... $60 \Omega$ (AOh)	---	---	overrange
	$0 \ldots 60 \Omega$	0 ... 6000	nominal range
	----	---	underrange
$\begin{aligned} & 4 \text { wire: } 0 \ldots 600 \Omega \\ & \text { (A1h) } \end{aligned}$	---	---	overrange
	$0 \ldots 600 \Omega$	0 ... 6000	nominal range
	---	---	underrange
$\begin{aligned} & 4 \text { wire: } 0 \ldots 3000 \Omega \\ & \text { (A2h) } \end{aligned}$	---	---	overrange
	0 ... 3000 $\Omega$	0 ... 30000	nominal range
	---	---	underrange

... continue resistance

Measuring range (function number)	Measuring value	Signal range	Range
$\begin{aligned} & 2 \text { wire: } 0 \ldots 60 \Omega \\ & \text { (DOh) } \end{aligned}$	$70.55 \Omega$	32511	overrange
	$0 \ldots 60 \Omega$	0 ... 27648	nominal range
	---	---	underrange
$\begin{aligned} & 2 \text { wire: } 0 \ldots . . .600 \Omega \\ & \text { (D1h) } \end{aligned}$	$705.5 \Omega$	32511	overrange
	$0 \ldots 600 \Omega$	0 ... 27648	nominal range
	----	---	underrange
$\begin{aligned} & 2 \text { wire: } 0 \ldots 3000 \Omega \\ & \text { (D2h) } \end{aligned}$	$3528 \Omega$	32511	overrange
	$0 \ldots 3000 \Omega$	0 ... 27648	nominal range
	---	---	underrange
$\begin{aligned} & 3 \text { wire: } 0 \ldots . .60 \Omega \\ & \text { (D8h) } \end{aligned}$	$70.55 \Omega$	32511	overrange
	$0 \ldots 60 \Omega$	0 ... 27648	nominal range
	---	---	underrange
$\begin{aligned} & 3 \text { wire: } 0 \ldots 600 \Omega \\ & \text { (D9h) } \end{aligned}$	$705.5 \Omega$	32511	overrange
	$0 \ldots 600 \Omega$	0 ... 27648	nominal range
	---	---	underrange
3 wire: $0 . . .3000 \Omega$ (DAh)	$3528 \Omega$	32511	overrange
	$0 \ldots 3000 \Omega$	0 ... 27648	nominal range
	---	---	underrange
$\begin{aligned} & 4 \text { wire: } 0 \ldots 60 \Omega \\ & \text { (EOh) } \end{aligned}$	$70.55 \Omega$	32511	overrange
	$0 \ldots 60 \Omega$	0... 27648	nominal range
	---	---	underrange
$\begin{aligned} & 4 \text { wire: } 0 \ldots 600 \Omega \\ & \text { (E1h) } \end{aligned}$	$705.5 \Omega$	32511	overrange
	$0 \ldots 600 \Omega$	0 ... 27648	nominal range
	---	---	underrange
4 wire: $0 . . .3000 \Omega$   (E2h)	$3528 \Omega$	32511	overrange
	$0 \ldots 3000 \Omega$	0 ... 27648	nominal range
	---	---	underrange

Temperature

Measuring range (function number)	Measuring value in ${ }^{\circ} \mathrm{C}$	Measuring value in ${ }^{\circ} \mathrm{F}$	Measuring value in K	Range
Type J:-210 $\ldots+1200^{\circ} \mathrm{C}$ $-346 \ldots 219{ }^{\circ} \mathrm{F}$ $63.2 \ldots 1473.2 \mathrm{~K}$   (B0h: ext. comp. $0^{\circ} \mathrm{C}$ )   (C0h: int. comp. $0^{\circ} \mathrm{C}$ )	+14500	26420	17232	overrange
	-2100 ... +12000	-3460 ... 21920	632 ... 14732	nominal range
	---	---	---	underrange
Type K: $-270 \ldots+1372^{\circ} \mathrm{C}$ -454 ... $2501.6^{\circ} \mathrm{F}$ 0 ... 1645.2K   (B1h: ext. comp. $0^{\circ} \mathrm{C}$ )   (C1h: int. comp. $0^{\circ} \mathrm{C}$ )	+16220	29516	18952	overrange
	-2700 ... +13720	-4540 ... 25016	0 ... 16452	nominal range
	---	---	---	underrange
$\begin{gathered} \text { Type N: }-270 \ldots+1300^{\circ} \mathrm{C} \\ -454 \ldots 2372^{\circ} \mathrm{F} \\ 0 \ldots 1573.2 \mathrm{~K} \\ \text { (B2h: ext. comp. } 0^{\circ} \mathrm{C} \text { ) } \\ \text { (C2h: int. comp. } 0^{\circ} \mathrm{C} \text { ) } \\ \hline \end{gathered}$	+15500	28220	18232	overrange
	-2700 ... +13000	-4540 ... 23720	0 ... 15732	nominal range
	---	---	---	underrange
Type R: $-50 \ldots+1769^{\circ} \mathrm{C}$ $-58 \ldots 3216.2^{\circ} \mathrm{F}$   223.2 ... 2042.2K   (B3h: ext. comp. $0^{\circ} \mathrm{C}$ )   (C3h: int. comp. $0^{\circ} \mathrm{C}$ )	+20190	32766	22922	overrange
	-500 ... +17690	-580 ... 32162	2232 ... 20422	nominal range
	-1700	-2740	1032	underrange
Type S: $-50 \ldots+1769^{\circ} \mathrm{C}$ $-58 \ldots 3216.2^{\circ} \mathrm{F}$ $223.2 \ldots 2042.2 \mathrm{~K}$   (B4h: ext. comp. $0^{\circ} \mathrm{C}$ )   (C4h: int. comp. $0^{\circ} \mathrm{C}$ )	+20190	32766	22922	overrange
	-500 ... +17690	-580 ... 32162	2232 ... 20422	nominal range
	-1700	-2740	1032	underrange
Type T: $-270 \ldots+400^{\circ} \mathrm{C}$$-454 \ldots 752^{\circ} \mathrm{F}$$3.2 \ldots 673.2 \mathrm{~K}$(B5n: ext. comp. $0^{\circ} \mathrm{C}$ )(C5h: int. comp. $0^{\circ} \mathrm{C}$ )	+5400	10040	8132	overrange
	-2700 ... +4000	-4540 ... 7520	32... 6732	nominal range
	---	---	---	underrange
Type B: $0 \ldots+1820^{\circ} \mathrm{C}$ $32 \ldots 2786.5^{\circ} \mathrm{F}$ 273.2 ... 2093.2K   (B6h: ext. comp. $0^{\circ} \mathrm{C}$ )   (C6h: int. comp. $0^{\circ} \mathrm{C}$ )	+20700	32766	23432	overrange
	$0 \ldots+18200$	320 ... 27865	2732 ... 20932	nominal range
	-1200	-1840	1532	underrange
Type C: $0 \ldots+2315^{\circ} \mathrm{C}$$32 \ldots 2786.5^{\circ} \mathrm{F}$$273.2 \ldots 2093.2 \mathrm{~K}$(B7h: ext. comp. $0^{\circ} \mathrm{C}$ )(C7h: int. comp. $0^{\circ} \mathrm{C}$ )	+25000	32766	23432	overrange
	$0 \ldots+23150$	320 ... 27865	2732 ... 20932	nominal range
	-1200	-1840	1532	underrange
$\begin{gathered} \text { Type E: }-270 \ldots+1000^{\circ} \mathrm{C} \\ -454 \ldots 1832^{\circ} \mathrm{F} \\ 0 \ldots 1273.2 \mathrm{~K} \end{gathered}$   (B8h: ext. comp. $0^{\circ} \mathrm{C}$ )   (C8h: int. comp. $0^{\circ} \mathrm{C}$ )	+12000	21920	14732	overrange
	-2700 ... +10000	-4540 ... 18320	0 ... 12732	nominal range
	---	---	---	underrange
Type L: $-200 \ldots+900^{\circ} \mathrm{C}$ $-328 \ldots 1652^{\circ} \mathrm{F}$ $73.2 \ldots 1173.2 \mathrm{~K}$   (B9h: ext. comp. $0^{\circ} \mathrm{C}$ )   (C9h: int. comp. $0^{\circ} \mathrm{C}$ )	+11500	21020	14232	overrange
	-2000 ... +9000	-3280 ... 16520	732 ... 11732	nominal range
	---	---	---	underrange

## ELCO FS2-AI-BB30 - AI 2x12Bit 0...10V

## Description

The electronic module has 2 inputs with parameterizable functions.
The channels of the module are isolated to the backplane bus by means of DC/DC converters.

Properties

- 2 analog inputs
- Suited for sensors with 0
- 12bit resolution

Structure

Status indication


LED	Color	Description		
RUN MF	green red	RUN	MF	
		-	$\bigcirc$	Bus communication is OK Module status is OK
		-	-	Bus communication is OK Module status reports an error
		$\bigcirc$	$\bullet$	Bus communication is not possible Module status reports an error
		$\bigcirc$	$\bigcirc$	Error at bus power supply
		安	安	Error in parameterization
Al x	red	$\bullet$	Error channel x   - Signal leaves measuring range   - Error in parameterization	

on: • off: ○ blinks with 2 Hz :

Pin assignment
For wires with a cross section of $0.08 \mathrm{~mm}^{2}$ up to $1.5 \mathrm{~mm}^{2}$.


Pos.	Function	Type	Description
1	AII 0	I	+ Channel 0
2	- Al 0	I	Ground Channel 0
3	---	---	not connected
4	---	---	not connected
5	+Al 1	I	+ Channel 1
6	- Al 1	I	Ground Channel 1
7	---	---	not connected
8	---	---	not connected

I: Input

Technical data

Data	ELCO FS2-AI-BB30
Number of inputs	2
Power supply	DC 24 V via power module
Input range	$0 \ldots 10 \mathrm{~V}$
$\begin{aligned} & \text { Current consumption } \\ & 5 \mathrm{~V} \\ & 24 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 70 \mathrm{~mA} \\ & 15 \mathrm{~mA} \end{aligned}$
Internal resistor	$100 \mathrm{k} \Omega$
Limit frequency input filter	1 kHz
Resolution	12bit
Conversion time	4ms all channels
Operational limit (in the entire temperature range, referred to the input range)	
Voltage range	$\pm 0.3 \%$
Basic error limit (Operational limit at $25^{\circ} \mathrm{C}$, referred to the input range)	
Voltage range	$\pm 0.2 \%$
Isolation	500 Veff (field voltage to the bus)
Module ID	0401 15C3
Bit-width in the process image	Input: 2x16bit data
Configurable	yes

Parameter data The parameter data may be accessed during runtime with the following record sets:

Record set		Meaning	Default
No.	Byte		
128	0	Function number channel 0	10h
129	0	Function number channel 1	10h

Function number channel x

In the following there are the measuring ranges with function number listed, which were supported by the analog module.
With FFh the corresponding channel is deactivated.
The formulas listed here allow you to transform an evaluated measuring value (digital value) to a value assigned to the measuring range (analog value) and vice versa.

Measuring range (function number)	Voltage (U)	Decimal (D)	Hex	Range	Formulas for calculation
Siemens S 7 format (10h)	11.76 V	32511	7EFFh	overrange	$\begin{aligned} & D=27648 \cdot \frac{U}{10} \\ & U=D \cdot \frac{10}{27648} \end{aligned}$
	10 V	27648	6C00h	nominal range	
	5 V	13824	3600h		
	OV	0	0000h		
	-1.76V	-4864	ED00h	underrange	
$0 \text {... 10V }$   Siemens S5 format (20h)	12.5 V	20480	5000h	overrange	$\begin{aligned} & D=16384 \cdot \frac{U}{10} \\ & U=D \cdot \frac{10}{16384} \end{aligned}$
	10 V	16384	4000h	nominal range	
	5 V	8192	2000h		
	-2V	- 0	O000h		

Diagnostic data

So this module does not support interrupt functions, the diagnostics data serve for information about this module.
On error the corresponding channel LED of the module is activated and the error is registered in the diagnostics data.
The following errors are listed in the diagnostics data:

- Error in project engineering / parameterization
- Measuring range overflow
- Measuring range underflow

By using SFB 52 you always may access the diagnostic data of the module.
Record set 1 has the following structure:

Record set 1

Byte	Meaning
0	Bit 0: set at module failure   Bit 1: set at internal error   Bit 2: set at external error   Bit 3: set at channel error   Bit 4: set at external auxiliary supply missing   Bit 5, 6: 0 (fix)   Bit 7: Error in parameterization
1	Bit 3 ... 0: module class 0101 analog module   Bit 4: channel information present   Bit 7 ... 5: 0 (fix)
2/3	0 (fix)
4	Bit 6 ... 0: channel type 71h: analog input Bit 7: 0 (fix)
5	Number of diagnostic bits per channel (here 08h)
6	Number of channels of a module (here 02h)
7	Bit 0: channel error channel 0 Bit 1: channel error channel 1 Bit 7 ... 2: 0 (fix)
8	Channel-specific error channel 0:   Bit 0: configuring/parameter assignment error   Bit 5 ... 1: 0 (fix)   Bit 6: measuring range underflow   Bit 7: measuring range overflow
9	Channel-specific error channel 1:   Bit 0: configuring/parameter assignment error   Bit 5 ... 1: 0 (fix)   Bit 6: measuring range underflow   Bit 7: measuring range overflow
10... 15	Bit $7 \ldots 0$.. 0 (fix)

## ELCO FS2-AI-BB40 - Al 2x12Bit 0(4)...20mA

## Description

The electronic module has 2 inputs with parameterizable functions.
The channels of the module are isolated to the backplane bus by means of DC/DC converters.

Properties

- 2 analog inputs
- Suited for sensors with 0 ... $20 \mathrm{~mA} ; 4 \ldots 20 \mathrm{~mA}$ with external supply
- 12bit resolution


## Structure

Status indication


LED	Color	Description		
$\begin{array}{\|l} \hline \text { RUN } \\ \text { MF } \end{array}$	green red	RUN	MF	
		-	$\bigcirc$	Bus communication is OK Module status is OK
		-	-	Bus communication is OK Module status reports an error
		$\bigcirc$	-	Bus communication is not possible Module status reports an error
		$\bigcirc$	$\bigcirc$	Error at bus power supply
		㤩	安	Error in parameterization
AI X				
	red	- Error channel $x$    - Signal leaves measuring range    - Error in parameterization		

on: • off: ○ blinks with 2 Hz :

Pin assignment
For wires with a cross section of $0.08 \mathrm{~mm}^{2}$ up to $1.5 \mathrm{~mm}^{2}$.


Pos.	Function	Type	Description
1	+Al 0	I	+ Channel 0
2	- Al 0	I	Ground Channel 0
3	---	---	not connected
4	---	---	not connected
5	+Al 1	I	+ Channel 1
6	-Al 1	I	Ground Channel 1
7	---	---	not connected
8	---	---	not connected

I: Input

Technical data

Data	ELCO FS2-AI-BB40
Number of inputs	2
Power supply	DC 24 V via power module
Input range	0 ... 20mA / 4 ... 20mA
$\begin{aligned} & \text { Current consumption } \\ & 5 \mathrm{~V} \\ & 24 \mathrm{~V} \end{aligned}$	70 mA   15 mA
Internal resistor	$110 \Omega$
Limit frequency input filter	1kHz
Resolution	12bit
Conversion time	4ms all channels
Operational limit   (in the entire temperature range, referred to the input range)	
$0 \ldots 20 \mathrm{~mA}$	$\pm 0.3 \%$
$4 \ldots 20 \mathrm{~mA}$	$\pm 0.5 \%$
Basic error limit (Operational limit at $25^{\circ} \mathrm{C}$, referred to the input range)	
0 ... 20mA	$\pm 0.2 \%$
$4 \ldots 20 \mathrm{~mA}$	$\pm 0.3 \%$
Measuring error	0 ... 20mA: $\pm 0.2 \%$   4 ... $20 \mathrm{~mA}: \pm 0.3 \%$   (relating to operational limit at $25^{\circ} \mathrm{C}$ )
Isolation	500 Veff (field voltage to the bus)
Module ID	0402 15C3
Bit-width in the process image	Input: 2x16bit data
Configurable	yes

Parameter data The parameter data may be accessed during runtime with the following record sets:

Record set		Meaning	Default
No.	Byte		
128	0	Function number channel 0	31h
129	0	Function number channel 1	31h

Function number channel x

In the following there are the measuring ranges with corresponding function number listed, which were supported by the analog module.
With FFh the corresponding channel is deactivated.
The formulas listed here allow you to transform an evaluated measuring value (digital value) to a value assigned to the measuring range (analog value) and vice versa.

Measuring range (function number)	Current (I)	Decimal (D)	Hex	Range	Formulas for calculation
$0 \text {... 20mA }$   Siemens S7 format (31h)	23.52 mA	32511	7EFFh	overrange	$D=27648 \cdot \frac{I}{20}$
	20 mA	27648	6C00h	nominal range	
	10 mA	13824	3600h		
	OmA	- 0	0000h		$I=D \cdot \frac{20}{27648}$
	$-3.52 \mathrm{~mA}$	-4864	EDOOh	underrange	
0 ... 20 mA   Siemens S5 format (41h)	25.00 mA	20480	5000h	overrange	$D=16384 \cdot \frac{I}{20}$
	20 mA	16384	4000h	nominal range	
	10 mA	8192	2000h		
	$-4.00 \mathrm{~mA}$	-3277	F333h	underrange	$I=D \cdot \frac{20}{16384}$


Measuring range (function number)	Current (1)	Decimal (D)	Hex	Range	Formulas for calculation
4 ... 20 mA Siemens S7 format (30h)	22.81 mA	32511	7EFFh	overrange	$\begin{aligned} & D=27648 \cdot \frac{I-4}{16} \\ & I=D \cdot \frac{16}{27648}+4 \end{aligned}$
	20 mA	27648	6 COOh	nominal range	
	12 mA	13824	3600h		
	4 mA	0	0000h		
	1.19 mA	-4864	EDOOh	underrange	
4 ... 20 mA Siemens S5 format (40h)	24.00 mA	20480	5000h	overrange	$\begin{aligned} & D=16384 \cdot \frac{I-4}{16} \\ & I=D \cdot \frac{16}{16384}+4 \end{aligned}$
	20 mA	16384	4000h	nominal range	
	12 mA	8192	2000h		
	4 mA	0 -3277	0000h	underrange	

Diagnostic data

So this module does not support interrupt functions, the diagnostics data serve for information about this module.
On error the corresponding channel LED of the module is activated and the error is registered in the diagnostics data.
The following errors are listed in the diagnostics data:

- Error in project engineering / parameterization
- Measuring range overflow
- Measuring range underflow

By using SFB 52 you always may access the diagnostic data of the module.
Record set 1 has the following structure:

Record set 1

Byte	Meaning
0	Bit 0: set at module failure   Bit 1: set at internal error   Bit 2: set at external error   Bit 3: set at channel error   Bit 4: set at external auxiliary supply missing   Bit 5, 6: 0 (fix)   Bit 7: Error in parameterization
1	Bit 3 ... 0: module class 0101 analog module   Bit 4: channel information present   Bit 7 ... 5: 0 (fix)
2/3	0 (fix)
4	Bit 6 ... 0: channel type 71h: analog input Bit 7: 0 (fix)
5	Number of diagnostic bits per channel (here 08h)
6	Number of channels of a module (here 02h)
7	Bit 0: channel error channel 0 Bit 1: channel error channel 1 Bit 7 ... 2: 0 (fix)
8	Channel-specific error channel 0:   Bit 0: configuring/parameter assignment error   Bit 5 ... 1: 0 (fix)   Bit 6: measuring range underflow   Bit 7: measuring range overflow
9	Channel-specific error channel 1:   Bit 0: configuring/parameter assignment error   Bit 5 ... 1: 0 (fix)   Bit 6: measuring range underflow   Bit 7: measuring range overflow
10... 15	Bit $7 \ldots 0$.. 0 (fix)

## ELCO FS2－AI－BB90－Al 2x16Bit TC

## Description

The electronic module has 2 inputs for temperature and voltage measuring with parameterizable functions．The channels of the module are isolated to the backplane bus by means of DC／DC converters．

Properties
－ 2 analog inputs
－Suited for sensors with type J，K，N，R，S，T，B，C，E，L and for voltage measuring $\pm 80 \mathrm{mV}$
－16bit resolution
－Internal temperature compensation
－High potential gradient of DC140V／AC100V between the inputs

## Structure

Status indication


LED	Color	Description		
RUN MF	green red	RUN	MF	
		－	$\bigcirc$	Bus communication is OK Module status is OK
		－	－	Bus communication is OK Module status reports an error
		$\bigcirc$	－	Bus communication is not possible Module status reports an error
		$\bigcirc$	$\bigcirc$	Error at bus power supply
		安	安	Error in parameterization
Al x	red	－Error channel $x$   －Signal leaves measuring range   －Error in parameterization   －Wire break		

on：• off：○ blinks with 2 Hz ：嫁

Pin assignment

Supplementation to the installation guidelines

For wires with a cross section of $0.08 \mathrm{~mm}^{2}$ up to $1.5 \mathrm{~mm}^{2}$.


Pos.	Function	Type	Description
1	+ TC 0	I	+ Channel 0
2	- TC 0	I	Ground Channel 0
3	---	---	not connected
4	---	---	not connected
5	+TC 1	I	+ Channel 1
6	- TC 1	I	Ground Channel 1
7	---	---	not connected
8	---	---	not connected

I: Input

## Attention!

Please consider that the electronic module AI $2 \times 16$ Bit TC may exclusively be used together with the terminal module 001-0AA20!

To avoid variations in temperature within the module, which may affect the accuracy of the measurement, you should consider the following points when assembling:

- Do not arrange the module directly apart from a power module with a high feeding current.
- Do not install the module at the end of a line.
- The module should be in a static condition, i.e. the temperature should be as constant as possible in the environment of your module (closed switchgear cabinet free from air draught).
- The accuracy is reached after approx. 30 minutes after entering the static condition.

Technical data

Data	ELCO FS2-Al-BB90
Number of inputs	2 (differential)
Power supply	DC 24 V via power module
Input range	$\begin{aligned} & \pm 80 \mathrm{mV} \\ & \text { Type J, K, N, R, S, T, B, C, E, L } \end{aligned}$
$\begin{aligned} & \text { Current consumption } \\ & 5 \mathrm{~V} \\ & 24 \mathrm{~V} \end{aligned}$	75 mA 30 mA
Internal resistor	$10 \mathrm{M} \Omega$
Resolution	16bit
Conversion time	4.2 ... 324.1 ms each channel at 50 Hz $3.8 \ldots 270.5 \mathrm{~ms}$ each channel at 60 Hz
Operational limit*   (in the entire temperature range, referred to the input range)	
$\pm 80 \mathrm{mV}$	with interference frequency suppression: $\pm 0.1 \%$
$\pm 80 \mathrm{mV}$	without interference frequency suppression: $\pm 0.3 \%$
Type E, L, T, J, K, N	with interference frequency suppression: $\pm 1.5 \mathrm{~K}$
Type E, L, T, J, K, N	without interference frequency suppression: $\pm 2.5 \mathrm{~K}$
Type B, C, R, S	with interference frequency suppression: $\pm 4.0 \mathrm{~K}$
Type B, C, R, S	without interference frequency suppression: $\pm 8.0 \mathrm{~K}$
Basic error limit ${ }^{*}$(Operational limit at $25^{\circ} \mathrm{C}$, referred to the input range)	
$\pm 80 \mathrm{mV}$	with interference frequency suppression: $\pm 0.05 \%$
$\pm 80 \mathrm{mV}$	without interference frequency suppression: $\pm 0.25 \%$
Type E, L, T, J, K, N	with interference frequency suppression: $\pm 1.0 \mathrm{~K}$
Type E, L, T, J, K, N	without interference frequency suppression: $\pm 2.0 \mathrm{~K}$
Type B, C, R, S	with interference frequency suppression: $\pm 3.0 \mathrm{~K}$
Type B, C, R, S	without interference frequency suppression: $\pm 7.0 \mathrm{~K}$
Isolation	500 Veff (field voltage to the bus)
Module ID	04031543
Bit-width in the process image	Input: 2x16bit data
Configurable	yes

*) The indicated error limits are valid starting from the following temperatures:

- Thermoelement type T: $-200^{\circ} \mathrm{C}$
- Thermoelement type K: - $100^{\circ} \mathrm{C}$
- Thermoelement type B: $+700^{\circ} \mathrm{C}$
- Thermoelement type $\mathrm{N}:-150^{\circ} \mathrm{C}$
- Thermoelement type E: $-150^{\circ} \mathrm{C}$
- Thermoelement type R: $+200^{\circ} \mathrm{C}$
- Thermoelement type S: $+100^{\circ} \mathrm{C}$
- Thermoelement type J: - $100^{\circ} \mathrm{C}$

Parameter data
The parameter data may be accessed during runtime with the following record sets:

Record set		Meaning	Default
Nr .	Byte		
0	0	Diagnostics   Bit 5 ... 0: reserved   Bit 6: Diagnostics interrupt (1: activated)   Bit 7: reserved	00h
	1	Bit 0: Wire break recognition channel 0 (1: on) Bit 1: Wire break recognition channel 1 (1: on) Bit 7 ... 2: reserved	00h
	2	Bit 0: Limit value monitoring channel 0 (1: on) Bit 1: Limit value monitoring channel 1 (1: on) Bit 7 ... 2: reserved	00h
	3	reserved	00h
1	0	Bit $0,1:$ Temperature system $00:{ }^{\circ} \mathrm{C}$ $01:{ }^{\circ} \mathrm{F}$ $10: \mathrm{K}$ Bit $7 \ldots 2$ : reserved	00h
	1	```Bit 0, 1: Interference frequency suppression 01: 60 Hz 10: 50 Hz Bit 7 ... 2: reserved```	02h
128	0	Function number channel 0	C1h
	1	Function option channel 0	02h
	2, 3	Upper limit value channel 0	7FFFh
	4, 5	Lower limit value channel 0	8000h
129	0	Function number channel 1	C1h
	1	Function option channel 1	02h
	2,3	Upper limit value channel 1	7FFFh
	4,5	Lower limit value channel 1	8000h

Function option
Depending on the Interference frequency suppression for each channel the transducer velocity may be set.

Code	Velocity/channel at interference frequency suppression         50 Hz	
00h	324.1	60 Hz
01 h	164.2	270.5
02 h	84.2	737.2
03h	44.1	37.2
04h	24.2	20.5
05h	14.2	12.2
06h	9.2	8.0
07h	6.6	5.9
O8h	4.2	3.8

Upper limit value Lower limit value

Function number channel x

For each channel an upper and a lower limit may be defined. Here only values of the nominal range may be preset, otherwise you receive a parameterization error. By presetting 7FFFh for the upper respectively 8000h for the lower limit value the corresponding limit is deactivated.
As soon as the measuring value is beyond the limits and the limit value monitoring is activated, a process interrupt is initialized.

In the following there are the measuring ranges with corresponding function number listed, which were supported by the analog module.
With FFh the corresponding channel is deactivated.

Voltage

Meas. range (funct. no.)	Voltage (U)	Decimal (D)	Hex	Range	Formulas
-80 ... 80 mV Siemens S7 format (11h)	94.07 mV	32511	7EFFh	overrange	$\begin{aligned} & D=27648 \cdot \frac{U}{80} \\ & U=D \cdot \frac{80}{27648} \end{aligned}$
	80 mV	27648	6C00h	nominal range	
	0 V	0	0000h		
	$-80 \mathrm{mV}$	-27648	9400h		
	-94.07mV	-32512	8100h	underrange	
-80 ... 80 mV Siemens S5 format (12h)	100 mV	20480	5000h	overrange	$\begin{aligned} & D=16384 \cdot \frac{U}{80} \\ & U=D \cdot \frac{80}{16384} \end{aligned}$
	80 mV	16384	4000h	nominal range	
	OV	0	0000h		
	-80mV	-16384	C000h		
	-100mV	-20480	B000h	underrange	

Temperature

Measuring range (function number)	Measuring value in ${ }^{\circ} \mathrm{C}$	Measuring value in ${ }^{\circ} \mathrm{F}$	Measuring value in K	Range
Type $\mathrm{J}:-210 \ldots+1200^{\circ} \mathrm{C}$ $-346 \ldots 2192^{\circ} \mathrm{F}$ $63.2 \ldots 1473.2 \mathrm{~K}$   (BOh: ext. comp. $0^{\circ} \mathrm{C}$ )   (COh: int. comp. $0^{\circ} \mathrm{C}$ )	+14500	26420	17232	overrange
	-2100 ... +12000	-3460 ... 21920	632 ... 14732	nominal range
	---	---	---	underrange
Type K: $-270 \ldots+1372^{\circ} \mathrm{C}$ -454 ... $2501.6^{\circ} \mathrm{F}$ 0 ... 1645.2K   (B1h: ext. comp. $0^{\circ} \mathrm{C}$ )   (C1h: int. comp. $0^{\circ} \mathrm{C}$ )	+16220	29516	18952	overrange
	-2700 ... +13720	-4540 ... 25016	0 ... 16452	nominal range
	---	---	---	underrange
Type $\mathrm{N}:-270 \ldots+1300^{\circ} \mathrm{C}$$-454 \ldots 2370^{\circ} \mathrm{F}$$0 \ldots 1573.2 \mathrm{~K}$(B2h: ext. comp. $0^{\circ} \mathrm{C}$ )(C2h: int. comp. $0^{\circ} \mathrm{C}$ )	+15500	28220	18232	overrange
	-2700 ... +13000	-4540 ... 23720	0... 15732	nominal range
	---	---	---	underrange
Type R: $-50 \ldots+1769^{\circ} \mathrm{C}$ $-58 \ldots 3216.2^{\circ} \mathrm{F}$   223.2 ... 2042.2K   (B3h: ext. comp. $0^{\circ} \mathrm{C}$ )   (C3h: int. comp. $0^{\circ} \mathrm{C}$ )	+20190	32766	22922	overrange
	$-500 \ldots+17690$	-580 ... 32162	2232 ... 20422	nominal range
	-1700	-2740	1032	underrange
Type S: $-50 \ldots+1769^{\circ} \mathrm{C}$ $-58 \ldots 3216.2^{\circ} \mathrm{F}$ $223.2 \ldots 2042.2 \mathrm{~K}$   (B4h: ext. comp. $0^{\circ} \mathrm{C}$ )   (C4h: int. comp. $0^{\circ} \mathrm{C}$ )	+20190	32766	22922	overrange
	-500 ... +17690	-580 ... 32162	2232 ... 20422	nominal range
	-1700	-2740	1032	underrange
Type T: $-270 \ldots+400^{\circ} \mathrm{C}$$-454 \ldots 752^{\circ} \mathrm{F}$$3.2 \ldots 673.2 \mathrm{~K}$(B5h: ext. comp. $0^{\circ} \mathrm{C}$ )(C5h: int. comp. $0^{\circ} \mathrm{C}$ )	+5400	10040	8132	overrange
	-2700 ... +4000	-4540 ... 7520	32... 6732	nominal range
	---	---	---	underrange
Type B: $0 \ldots+1820^{\circ} \mathrm{C}$$32 \ldots 2786.5^{\circ} \mathrm{F}$$273.2 \ldots 2093.2 \mathrm{~K}$(B6h: ext. comp. $0^{\circ} \mathrm{C}$ )(C6h: int. comp. $0^{\circ} \mathrm{C}$ )	+20700	32766	23432	overrange
	$0 \ldots+18200$	320 ... 27865	2732 ... 20932	nominal range
	-1200	-1840	1532	underrange
Type C: $0 \ldots+2315^{\circ} \mathrm{C}$$32 \ldots 2786.5^{\circ} \mathrm{F}$$273.2 \ldots 2093.2 \mathrm{~K}$(B7h: ext. comp. $0^{\circ} \mathrm{C}$ )(C7h: int. comp. $0^{\circ} \mathrm{C}$ )	+25000	32766	23432	overrange
	$0 \ldots+23150$	$320 \ldots 27865$	2732 ... 20932	nominal range
	-1200	-1840	1532	underrange
$\begin{gathered} \text { Type E: }-270 \ldots+1000^{\circ} \mathrm{C} \\ -454 \ldots 1832^{\circ} \mathrm{F} \\ 0 \ldots 1273.2 \mathrm{~K} \end{gathered}$   (B8h: ext. comp. $0^{\circ} \mathrm{C}$ )   (C8h: int. comp. $0^{\circ} \mathrm{C}$ )	+12000	21920	14732	overrange
	-2700 ... +10000	-4540 ... 18320	0 ... 12732	nominal range
	---	---	---	underrange
Type L: $-200 \ldots+900^{\circ} \mathrm{C}$ $-328 \ldots 1652^{\circ} \mathrm{F}$ $73.2 \ldots 1173.2 \mathrm{~K}$   (B9h: ext. comp. $0^{\circ} \mathrm{C}$ )   (C9h: int. comp. $0^{\circ} \mathrm{C}$ )	+11500	21020	14232	overrange
	-2000 ... +9000	-3280 ... 16520	732... 11732	nominal range
	---	---	---	underrange

## Diagnostics and interrupt

Event	Process interrupt	Diagnostics   interrupt	parameterizable
Error in project   engineering/   parameterization	-	X	-
Recognized wire   break	-	X	X
Measuring range   overflow	-	X	-
Measuring range   underflow	-	X	-
Limit overflow	X	-	X
Limit underflow	X	-	X
Process interrupt   lost	-	X	-

## Process interrupt

A process interrupt causes a call of the OB 40 . Within the OB 40 you may find the logical basic address of the module that initialized the process interrupt by using the Local word 6. More detailed information about the initializing event is to find in the local double word 8.

Local double word 8 of the OB 40

The local double word 8 of the OB 40 has the following structure:

Local byte	Bit 7 $\ldots 0$
8	Bit 0: Limit overflow channel 0   Bit 1: Limit overflow channel 1   Bit 7 ... 2: 0 (fix)
9	Bit 0: Limit underflow channel 0   Bit 1: Limit underflow channel 1   Bit $7 \ldots 2: 0$ (fix)
$10 \ldots 11$	16 bit $\mu$ s value at the moment of the interrupt

## 16bit $\mu s$ value

In the FS200 module there is a timer ( $\mu \mathrm{s}$ ticker). With PowerON the timer starts counting with 0 . After $65535 \mu$ s the timer starts with 0 again.
With each process interrupt the timer value is stored as 16bit $\mu$ s value and may be accessed via the local double word 8 of the OB 40.

## Diagnostic interrupt

Via the parameterization (record set 00h) you may activate a global diagnostic interrupt for the analog and digital part.
A diagnostic interrupt occurs when e.g. during a process interrupt execution in OB 40 another process interrupt is thrown for the same event. The initialization of a diagnostic interrupt interrupts the recent process interrupt execution in OB 40 and branches in OB 82 to diagnostic interrupt processing incoming .
If during the diagnostic interrupt processing other events are occurring at other channels that may also cause a process res. diagnostic interrupt, these are interim stored.
After the end of the diagnostic interrupt processing at first all interim-stored diagnostic interrupts are processed in the sequence of their occurrence and then all process interrupts.
If a channel where currently a diagnostic interrupt incoming is processed res. interim stored initializes further process interrupts, these get lost. When a process interrupt for which a diagnostic interruptincoming has been released is ready, the diagnostic interrupt processing is called again as diagnostic interrupt ${ }_{\text {going }}$.
All events of a channel between diagnostic interruptincoming and diagnostic interrupt $_{\text {going }}$ are not stored and get lost. Within this time window
(1. diagnostic interrupt incoming until last diagnostic interrupt ${ }_{\text {going }}$ ) the MF LED of the module. Additionally for every diagnostic interrupt incoming/going $^{\text {an }}$ entry in the diagnostic buffer of the CPU occurs.


Diagnostic interrupt processing

Record set 1
Diagnostic incoming

Byte	Bit $7 \ldots 0$
0	Bit 0: set at module failure   Bit 1: set at internal error   Bit 2: set at external error   Bit 3: set at channel error   Bit 4: set when external auxiliary supply is missing   Bit 6 ... 5: 0 (fix)   Bit 7: Error in parameterization
1	Bit 3 ... 0: Module class 0101b: Analog module   Bit 4: Channel information present Bit 7... 5: 0 (fix)
2	0 (fix)
3	Bit 3 ... 0: 0 (fix)   Bit 4: internal communication error   Bit 5: 0 (fix)   Bit 6: Process interrupt lost   Bit 7: 0 (fix)
4	Bit 6 ... 0: channel type   71h: Analog input   Bit 7: 0 (fix)
5	Number of diagnostic bits per channel (here 08h)
6	Number of channels of a module (here 02h)
7	Bit 0: Error in channel 0 Bit 1: Error in channel 1 Bit 7 ... 2: 0 (fix)
8	Channel specific error: Channel 0:   Bit 0: Error in project engineering/parameterization   Bit 3... 1:0 (fix)   Bit 4: Wire break   Bit 5: Process interrupt lost   Bit 6: Measuring range underflow   Bit 7: Measuring range overflow
9	Channel specific error: Channel 1:   Bit 0: Error in project engineering/parameterization   Bit 3... 1: 0 (fix)   Bit 4: Wire break   Bit 5: Process interrupt lost   Bit 6: Measuring range underflow   Bit 7: Measuring range overflow
$10 \ldots 15$	0 (fix)

Record set 1
Diagnostic ${ }_{\text {going }}$
After the removing error a diagnostic message $_{\text {going }}$ takes place.

## ELCO FS2－AI－BD30－AI 4x12Bit 0．．．10V

## Description

The electronic module has 4 inputs with parameterizable functions．
The channels of the module are isolated to the backplane bus by means of DC／DC converters．

Properties
－ 4 analog inputs
－Suited for sensors with 0 10V
－12bit resolution

Structure

Status indication


LED	Color	Description		
$\begin{array}{\|l} \hline \text { RUN } \\ \text { MF } \end{array}$	green red	RUN	MF	
		－	$\bigcirc$	Bus communication is OK Module status is OK
		－	－	Bus communication is OK Module status reports an error
		$\bigcirc$	－	Bus communication is not possible Module status reports an error
		$\bigcirc$	$\bigcirc$	Error at bus power supply
		㤩	安	Error in parameterization
AI X				
	red	- Error channel $x$    - Signal leaves measuring range    - Error in parameterization		

on：• off：○ blinks with 2 Hz ：保

Pin assignment
For wires with a cross section of $0.08 \mathrm{~mm}^{2}$ up to $1.5 \mathrm{~mm}^{2}$.


Pos.	Function	Type	Description
1	+ AI 0	I	+ Channel 0
2	- Al 0	I	Ground Channel 0
3	+ Al 2	I	+ Channel 2
4	- Al 2	I	Ground Channel 2
5	+AI 1	I	+ Channel 1
6	- Al 1	I	Ground Channel 1
7	+AI 3	I	+ Channel 3
8	- Al 3	I	Ground Channel 3

I: Input

Technical data

Data	ELCO FS2-AI-BD30
Number of inputs	4
Power supply	DC 24 V via power module
Input range	0... 10V
$\begin{array}{\|l} \hline \text { Current consumption } \\ 5 \mathrm{~V} \\ 24 \mathrm{~V} \\ \hline \end{array}$	$\begin{aligned} & 70 \mathrm{~mA} \\ & 15 \mathrm{~mA} \end{aligned}$
Internal resistor	100k $\Omega$
Limit frequency input filter	1 kHz
Resolution	12bit
Conversion time	8 ms all channels
Operational limit   (in the entire temperature range, referred to the input range)	
Voltage range	$\pm 0.3 \%$
Basic error limit   (Operational limit at $25^{\circ} \mathrm{C}$, referred to the input range)	
Voltage range	$\pm 0.2 \%$
Isolation	500Veff (field voltage to the bus)
Module ID	0404 15C4
Bit-width in the process image	Input: 4x16bit data
Configurable	yes

Parameter data The parameter data may be accessed during runtime with the following record sets:

Record set		Meaning	Default
No.	Byte		
128	0	Function number channel 0	10h
129	0	Function number channel 1	10h
130	0	Function number channel 2	10h
131	0	Function number channel 3	10h

Function number channel x

In the following there are the measuring ranges with corresponding function number listed, which were supported by the analog module. With FFh the corresponding channel is deactivated.
The formulas listed here allow you to transform an evaluated measuring value (digital value) to a value assigned to the measuring range (analog value) and vice versa.

Measurement range (function number)	Voltage (U)	Decimal (D)	Hex	Range	Formulas for calculation
0 ... 10 V   Siemens S7 format (10h)	11.76V	32511	7EFFh	overrange	$\begin{aligned} & D=27648 \cdot \frac{U}{10} \\ & U=D \cdot \frac{10}{27648} \end{aligned}$
	10 V	27648	6C00h	nominal range	
	5 V	13824	3600h		
	OV	0	0000h		
	-1.76V	-4864	ED00h	underrange	
0 ... 10 V   Siemens S5 format   (20h)	12.5 V	20480	5000h	overrange	$\begin{aligned} & D=16384 \cdot \frac{U}{10} \\ & U=D \cdot \frac{10}{16384} \end{aligned}$
	10 V	16384	4000h	nominal range	
	5 V	8192	2000h		
	-2V	0	O000h	underrange	

Diagnostic data
So this module does not support interrupt functions, the diagnostics data serve for information about this module.
On error the corresponding channel LED of the module is activated and the error is registered in the diagnostics data.
The following errors are listed in the diagnostics data:

- Error in project engineering / parameterization
- Measuring range overflow
- Measuring range underflow

By using SFB 52 you always may access the diagnostic data of the module.
Record set 1 has the following structure:

Record set 1

Byte	Meaning
0	Bit 0: set at module failure   Bit 1: set at internal error   Bit 2: set at external error   Bit 3: set at channel error   Bit 4: set at external auxiliary supply missing   Bit 5, 6: 0 (fix)   Bit 7: Error in parameterization
1	Bit 3 ... 0: module class 0101 analog module   Bit 4: channel information present Bit 7... 5: 0 (fix)
2/3	0 (fix)
4	Bit 6 ... 0: channel type   71 h : analog input   Bit 7: 0 (fix)
5	Number of diagnostic bits per channel (here 08h)
6	Number of channels of a module (here 04h)
7	Bit 0: channel error channel 0 Bit 1: channel error channel 1 Bit 2: channel error channel 2 Bit 3: channel error channel 3 Bit 7... 4: 0 (fix)
8	Channel-specific error channel 0:   Bit 0: configuring/parameter assignment error   Bit 5 ... 1: 0 (fix)   Bit 6: measuring range underflow   Bit 7: measuring range overflow
9	Channel-specific error channel 1:   Bit 0: configuring/parameter assignment error   Bit 5 ... 1: 0 (fix)   Bit 6: measuring range underflow   Bit 7: measuring range overflow
10	Channel-specific error channel 2:   Bit 0: configuring/parameter assignment error   Bit 5 ... 1: 0 (fix)   Bit 6: measuring range underflow   Bit 7: measuring range overflow
11	Channel-specific error channel 3:   Bit 0: configuring/parameter assignment error   Bit 5... 1: 0 (fix)   Bit 6: measuring range underflow   Bit 7: measuring range overflow
12... 15	Bit $7 . . .0: 0$ (fix)

## ELCO FS2-AI-BD40 - AI 4x12Bit 0(4)...20mA

## Description

The electronic module has 4 inputs with parameterizable functions.
The channels of the module are isolated to the backplane bus by means of DC/DC converters.

Properties

- 4 analog inputs
- Suited for sensors with 0 ... $20 \mathrm{~mA} ; 4$... 20 mA with external supply
- 12bit resolution

Structure

Status indication


LED	Color	Description		
$\begin{array}{\|l} \hline \text { RUN } \\ \text { MF } \end{array}$	green red	RUN	MF	
		-	$\bigcirc$	Bus communication is OK Module status is OK
		-	-	Bus communication is OK Module status reports an error
		$\bigcirc$	-	Bus communication is not possible Module status reports an error
		$\bigcirc$	$\bigcirc$	Error at bus power supply
		㤩	安	Error in parameterization
AI X				
	red	- Error channel $x$    - Signal leaves measuring range    - Error in parameterization		

on: • off: ○ blinks with 2 Hz :

Pin assignment
For wires with a cross section of $0.08 \mathrm{~mm}^{2}$ up to $1.5 \mathrm{~mm}^{2}$.


Pos.	Function	Type	Description
1	+Al 0	I	+ Channel 0
2	-Al 0	I	Ground Channel 0
3	+Al 2	I	+ Channel 2
4	-Al 2	I	Ground Channel 2
5	+Al 1	I	+ Channel 1
6	-Al 1	I	Ground Channel 1
7	+Al 3	I	+ Channel 3
8	-Al 3	I	Ground Channel 3

I: Input

Technical data

Data	ELCO FS2-AI-BD40
Number of inputs	4
Power supply	DC 24 V via power module
Input range	0 ... 20mA / $4 \ldots 20 \mathrm{~mA}$
$\begin{array}{\|c\|} \hline \text { Current consumption } \\ 5 \mathrm{~V} \\ 24 \mathrm{~V} \\ \hline \end{array}$	70 mA   15 mA
Internal resistor	$110 \Omega$
Limit frequency input filter	1 kHz
Resolution	12bit
Conversion time	8ms all channels
Operational limit   (in the entire temperature range, referred to the input range)	
$0 \ldots 20 \mathrm{~mA}$	$\pm 0.3 \%$
$4 \ldots 20 \mathrm{~mA}$	$\pm 0.5 \%$
Basic error limit (Operational limit at $25^{\circ} \mathrm{C}$, referred to the input range)	
0 ... 20mA	$\pm 0.2 \%$
$4 \ldots 20 \mathrm{~mA}$	$\pm 0.3 \%$
Isolation	500Veff (field voltage to the bus)
Module ID	0405 15C4
Bit-width in the process image	Input: 4x16bit data
Configurable	yes

Parameter data The parameter data may be accessed during runtime with the following record sets:

Record set		Meaning	Default
No.	Byte		
128	0	Function number channel 0	31h
129	0	Function number channel 1	31h
130	0	Function number channel 2	31h
131	0	Function number channel 3	31h

Function number channel x

In the following there are the measuring ranges with corresponding function number listed, which were supported by the analog module.
With FFh the corresponding channel is deactivated.
The formulas listed here allow you to transform an evaluated measuring value (digital value) to a value assigned to the measuring range (analog value) and vice versa.

Measurement range (function number)	Current (I)	Decimal (D)	Hex	Range	Formulas for calculation
$0 \text {... 20mA }$   Siemens S7 format (31h)	23.52 mA	32511	7EFFh	overrange	$D=27648 \cdot \frac{I}{20}$
	20 mA	27648	6C00h	nominal range	
	10 mA	13824	3600h		
	0 mA	0	0000h		$I=D \cdot \frac{20}{27648}$
	-3.52mA	-4864	EDOOh	underrange	
0 ... 20mA Siemens S5 format (41h)	25.00 mA	20480	5000h	overrange	$\begin{aligned} & D=16384 \cdot \frac{I}{20} \\ & I=D \cdot \frac{20}{16384} \end{aligned}$
	20 mA	16384	4000h	nominal range	
	10 mA	8192	2000h		
	- 0.00 mA	0	0000h		


Measurement range (function number)	Current (1)	Decimal (D)	Hex	Range	Formulas for calculation
$4 \ldots 20 \mathrm{~mA}$   Siemens S7 format (30h)	22.81 mA	32511	7EFFh	overrange	$\begin{aligned} & D=27648 \cdot \frac{I-4}{16} \\ & I=D \cdot \frac{16}{27648}+4 \end{aligned}$
	20 mA	27648	6C00h	nominal range	
	12 mA	13824	3600h		
	4 mA	0	0000h		
	1.19 mA	-4864	ED00h	underrange	
$4 \ldots 20 \mathrm{~mA}$   Siemens S5 format (40h)	24.00 mA	20480	5000h	overrange	$\begin{aligned} & D=16384 \cdot \frac{I-4}{16} \\ & I=D \cdot \frac{16}{16384}+4 \end{aligned}$
	20 mA	16384	4000h	nominal range	
	12 mA	8192	2000h		
	4 mA	0	0000h		
	0.8 mA	-3277	F333h	underrange	

Diagnostic data
So this module does not support interrupt functions, the diagnostics data serve for information about this module.
On error the corresponding channel LED of the module is activated and the error is registered in the diagnostics data.
The following errors are listed in the diagnostics data:

- Error in project engineering / parameterization
- Measuring range overflow
- Measuring range underflow

By using SFB 52 you always may access the diagnostic data of the module.
Record set 1 has the following structure:
Record set 1

Byte	Meaning
0	Bit 0:set at module failure   Bit 1: set at internal error   Bit 2: set at external error   Bit 3: set at channel error   Bit 4: set at external auxiliary supply missing   Bit 5, 6: 0 (fix)   Bit 7: Error in parameterization
1	Bit 3 ... 0: module class 0101 analog module   Bit 4: channel information present Bit 7... 5: 0 (fix)
2/3	0 (fix)
4	Bit 6 ... 0: channel type   71 h : analog input   Bit 7: 0 (fix)
5	Number of diagnostic bits per channel (here 08h)
6	Number of channels of a module (here 04h)
7	Bit 0: channel error channel 0 Bit 1: channel error channel 1 Bit 2: channel error channel 2 Bit 3: channel error channel 3 Bit 7... 4: 0 (fix)
8	Channel-specific error channel 0:   Bit 0: configuring/parameter assignment error   Bit 5 ... 1: 0 (fix)   Bit 6: measuring range underflow   Bit 7: measuring range overflow
9	Channel-specific error channel 1:   Bit 0: configuring/parameter assignment error   Bit 5 ... 1: 0 (fix)   Bit 6: measuring range underflow   Bit 7: measuring range overflow
10	Channel-specific error channel 2:   Bit 0: configuring/parameter assignment error   Bit 5 ... 1: 0 (fix)   Bit 6: measuring range underflow   Bit 7: measuring range overflow
11	Channel-specific error channel 3:   Bit 0: configuring/parameter assignment error   Bit 5... 1: 0 (fix)   Bit 6: measuring range underflow   Bit 7: measuring range overflow
12... 15	Bit $7 . . .0: 0$ (fix)

## ELCO FS2－AI－BD80－Al 4x16Bit R／RTD

## Description

The electronic module has 4 inputs for resistance measurement with parameterizable functions．
The channels of the module are isolated to the backplane bus by means of DC／DC converters．

Properties
－ 4 analog inputs
－Suited for resistance－type sensors 0 ．．． $3000 \Omega$ and resistance temperature sensors Pt100，Pt1000，NI100 and NI1000
－Resistance measurement with 2－，3－and 4 wires
－16bit resolution

## Structure


［1］Locking lever terminal module
［2］Labeling strip
［3］Backplane bus
［4］LED status indication
［5］DC 24 V power section supply
［6］Electronic module
［7］Terminal module
［8］Locking lever electronic module
［9］Terminal

Status indication


LED	Color	Description		
RUN MF	green red	RUN	MF	
		－	$\bigcirc$	Bus communication is OK Module status is OK
		－	－	Bus communication is OK Module status reports an error
		$\bigcirc$	－	Bus communication is not possible Module status reports an error
		$\bigcirc$	$\bigcirc$	Error at bus power supply
		嫁	浐	Error in parameterization
Al x	red	－	Error   －Sig   －Err   －Wir	hannel $x$ al leaves measuring range in parameterization break

on：• off：○ blinks with 2 Hz ：独

Pin assignment
For wires with a cross section of $0.08 \mathrm{~mm}^{2}$ up to $1.5 \mathrm{~mm}^{2}$.


Pos.	Function	Type	Description
1	+AI 0	I	+ Channel 0
2	- Al 0	I	Ground Channel 0
3	+Al 2	I	+ Channel 2
4	- Al 2	I	Ground Channel 2
5	+Al 1	I	+ Channel 1
6	- Al 1	I	Ground Channel 1
7	+Al 3	I	+ Channel 3
8	-Al 3	I	Ground Channel 3

I: Input

Technical data

Data	ELCO FS2-AI-BD80
Number of inputs	4 (differential)
Power supply	DC 24 V via power module
Input range	$\begin{aligned} & \text { Resistor } 0 \ldots 3000 \Omega, \\ & \text { Pt100, Pt1000, NI100, NI1000 } \\ & \hline \end{aligned}$
$\begin{array}{\|l} \hline \text { Current consumption } \\ 5 \mathrm{~V} \\ 24 \mathrm{~V} \\ \hline \end{array}$	75 mA 30 mA
Internal resistor	$\mathrm{min} .10 \mathrm{M} \Omega$
Resolution	16bit
Conversion time	4.2 ... 324.1 ms each channel at 50 Hz $3.8 \ldots 270.5 \mathrm{~ms}$ each channel at 60 Hz
Operational limit   (in the entire temperature range, referred to the input range)	
Resistor areas	$\pm 0.4 \%$
Resistance thermometer	$\pm 0.4 \%$
Basic error limit(Operational limit at $25^{\circ} \mathrm{C}$, referred to the input range)	
Resistor areas	$\pm 0.2 \%$
Resistance thermometer	$\pm 0.2 \%$
Isolation	500 Veff (field voltage to the bus)
Module ID	04061544
Bit-width in the process image	Input: 4x16bit data
Configurable	yes

Parameter data
The parameter data may be accessed during runtime with the following record sets:

Record set		Meaning	Default
Nr .	Byte		
0	0	Diagnostics   Bit 5 ... 0: reserved   Bit 6: Diagnostics interrupt (1: activated)   Bit 7: reserved	
	1	Bit 0: Wire break recognition channel 0 (1: on) Bit 1: Wire break recognition channel 1 (1: on) Bit 2: Wire break recognition channel 2 (1: on) Bit 3: Wire break recognition channel 3 (1: on) Bit 7 ... 4: reserved	
	2	Bit 0: Limit value monitoring channel 0 (1: on) Bit 1: Limit value monitoring channel 1 (1: on) Bit 2: Limit value monitoring channel 2 (1: on) Bit 3: Limit value monitoring channel 3 (1: on) Bit 7 ... 4: reserved	
	3	reserved	
1	0	Bit $0,1:$ Temperature system $00:{ }^{\circ} \mathrm{C}$ $01:{ }^{\circ} \mathrm{F}$ 10: K Bit $7 \ldots 2$ : reserved	
	1	```Bit 0, 1: Interference frequency suppression 01: 60 Hz 10: 50 Hz Bit 7 ... 2: reserved```	
128	0	Function number channel 0	50h
	1	Function option channel 0	00h
	2, 3	Upper limit value channel 0	7FFFh
	4, 5	Lower limit value channel 0	8000h
129	0	Function number channel 1	50h
	1	Function option channel 1	00h
	2, 3	Upper limit value channel 1	7FFFh
	4, 5	Lower limit value channel 1	8000h
130	0	Function number channel 2	50h*
	1	Function option channel 2	00h
	2, 3	Upper limit value channel 2	7FFFh
	4, 5	Lower limit value channel 2	8000h
131	0	Function number channel 3	50h*
	1	Function option channel 3	00h
	2, 3	Upper limit value channel 3	7FFFh
	4, 5	Lower limit value channel 3	8000h

[^3]Function option

Upper limit value Lower limit value

Function number channel $x$

Depending on the Interference frequency suppression for each channel the transducer velocity may be set.

Code	Velocity/channel at Interference frequency suppression      50 Hz	60 Hz
00 h	324.1	270.5
01 h	164.2	137.2
02 h	84.2	70.5
03 h	44.1	37.2
04 h	24.2	20.5
05 h	14.2	12.2
06 h	9.2	8.0
07 h	6.6	5.9
08 h	4.2	3.8

For each channel an upper and a lower limit may be defined. As soon as the measuring value is be beyond the limits and the limit value monitoring is activated, a process interrupt is initialized.

In the following there are the measuring ranges with corresponding function number listed, which were supported by the analog module. With FFh the corresponding channel is deactivated.

Function number

Measuring range (Function number)	Measuring value	Signal range	Range
$\begin{aligned} & 2 \text { wire: PT100 } \\ & (50 h) \end{aligned}$	$+1000^{\circ} \mathrm{C}$	+10000	overrange
	$-200 \ldots+850^{\circ} \mathrm{C}$	$-2000 \ldots+8500$	nominal range
	$-243{ }^{\circ} \mathrm{C}$	-2430	underrange
2 wire: PT1000 (51h)	$+100^{\circ} \mathrm{C}$	+10000	overrange
	$-200 \ldots+850^{\circ} \mathrm{C}$	-2000 ... +8500	nominal range
	$-243{ }^{\circ} \mathrm{C}$	-2430	underrange
$\begin{aligned} & 2 \text { wire: NI100 } \\ & (52 h) \end{aligned}$	$+295^{\circ} \mathrm{C}$	+2950	overrange
	$-60 \ldots+250^{\circ} \mathrm{C}$	-600 ... +2500	nominal range
	$-105^{\circ} \mathrm{C}$	-1050	underrange
$\begin{gathered} 2 \text { wire: NI1000 } \\ (53 \mathrm{~h}) \end{gathered}$	$+295^{\circ} \mathrm{C}$	+2950	overrange
	$-60 \ldots+250^{\circ} \mathrm{C}$	-600 ... +2500	nominal range
	$-105^{\circ} \mathrm{C}$	-1050	underrange
3 wire: PT100 (58h)	$+1000^{\circ} \mathrm{C}$	+10000	overrange
	$-200 \ldots+850^{\circ} \mathrm{C}$	-2000 ... +8500	nominal range
	$-243{ }^{\circ} \mathrm{C}$	-2430	underrange
3 wire: PT1000 (59h)	$+1000^{\circ} \mathrm{C}$	+10000	overrange
	$-200 \ldots+850^{\circ} \mathrm{C}$	-2000 ... +8500	nominal range
	$-243{ }^{\circ} \mathrm{C}$	-2430	underrange
$\begin{gathered} 3 \text { wire: NI100 } \\ (5 \mathrm{Ah}) \end{gathered}$	$+295^{\circ} \mathrm{C}$	+2950	overrange
	$-60 \ldots+250^{\circ} \mathrm{C}$	-600 ... +2500	nominal range
	$-105^{\circ} \mathrm{C}$	-1050	underrange
3 wire: NI1000 (5Bh)	$+295^{\circ} \mathrm{C}$	+2950	overrange
	$-60 \ldots+250^{\circ} \mathrm{C}$	-600 ... +2500	nominal range
	$-105^{\circ} \mathrm{C}$	-1050	underrange
4 wire: PT100 (60h)	$+1000^{\circ} \mathrm{C}$	+10000	overrange
	$-200 \ldots+850^{\circ} \mathrm{C}$	-2000 ... +8500	nominal range
	$-243{ }^{\circ} \mathrm{C}$	-2430	underrange
4 wire: PT1000 (61h)	$+1000^{\circ} \mathrm{C}$	+10000	overrange
	$-200 \ldots+850^{\circ} \mathrm{C}$	-2000 ... +8500	nominal range
	$-243{ }^{\circ} \mathrm{C}$	-2430	underrange
4 wire: NI100 (62h)	$+295^{\circ} \mathrm{C}$	+2950	overrange
	$-60 \ldots+250^{\circ} \mathrm{C}$	-600 ... +2500	nominal range
	$-105^{\circ} \mathrm{C}$	-1050	underrange
4 wire: NI1000 (63h)	$+295^{\circ} \mathrm{C}$	+2950	overrange
	$-60 \ldots+250^{\circ} \mathrm{C}$	-600 ... +2500	nominal range
	$-105^{\circ} \mathrm{C}$	-1050	underrange
2 wire: $0 \ldots 60 \Omega$ (70h)	---	---	overrange
	0...60	0 ... 32767	nominal range
	---	---	underrange
2 wire: $0 \ldots 600 \Omega$ (71h)	---	---	overrange
	0... 600 ${ }^{\text {a }}$	0 ... 32767	nominal range
	---	---	underrange
2 wire: $0 \ldots 3000 \Omega$ (72h)	---	---	overrange
	$0 \ldots 3000 \Omega$	0 ... 32767	nominal range
	---	---	underrange

... continue function number

Measuring range (Function number)	Measuring value	Signal range	Range
3 wire: $0 \ldots 60 \Omega$ (78h)	---	---	overrange
	0...60	0... 32767	nominal range
	---	---	underrange
3 wire: $0 \ldots 600 \Omega$ (79h)	---	---	overrange
	0 ... 600	0 ... 32767	nominal range
	---	---	underrange
3 wire: $0 \ldots 3000 \Omega$   (7Ah)	---	---	overrange
	0... 3000	0... 32767	nominal range
	---	---	underrange
4 wire: $0 \ldots 60 \Omega$ (80h)	---	---	overrange
	0...60 ${ }^{\text {a }}$	0 ... 32767	nominal range
	---	---	underrange
4 wire: $0 \ldots 600 \Omega$ (81h)	---	---	overrange
	0 ... 600	0 ... 32767	nominal range
	---	---	underrange
4 wire: $0 \ldots 3000 \Omega$ (82h)	---	---	overrange
	0... 3000 ${ }^{\text {a }}$	0 ... 32767	nominal range
	---	---	underrange
2 wire: $0 \ldots 60 \Omega$ (90h)	---	---	overrange
	$0 \ldots 60 \Omega$	$0 \ldots 6000$	nominal range
	---	---	underrange
2 wire: $0 \ldots 600 \Omega$ (91h)	---	---	overrange
	0... 600	$0 . . .6000$	nominal range
	---	---	underrange
2 wire : $0 \ldots 3000 \Omega$ (92h)	---	---	overrange
	0... 3000 ${ }^{\text {a }}$	0 ... 30000	nominal range
	---	---	underrange
3 wire: $0 \ldots 60 \Omega$ (98h)	---	---	overrange
	0...60 ${ }^{\text {a }}$	$0 \ldots 6000$	nominal range
	---	---	underrange
3 wire: 0 ... 600 $\Omega$ (99h)	---	---	overrange
	0... 600 ${ }^{\text {a }}$	$0 \ldots 6000$	nominal range
	---	---	underrange
3 wire: $0 \ldots 3000 \Omega$   (9Ah)	---	---	overrange
	0... 3000 ${ }^{\text {a }}$	0... 30000	nominal range
	---	---	underrange
4 wire: $0 \ldots 60 \Omega$ (AOh)	---	---	overrange
	0...60	$0 \ldots 6000$	nominal range
	---	---	underrange
4 wire: $0 \ldots 600 \Omega$   (A1h)	---	---	overrange
	$0 \ldots 600 \Omega$	0 ... 6000	nominal range
	---	---	underrange
4 wire: $0 \ldots 3000 \Omega$   (A2h)	---	---	overrange
	0... 3000 ${ }^{\text {a }}$	0... 30000	nominal range
	---	---	underrange

... continue function number

Measuring range (Function number)	Measuring value	Signal range	Range
$\begin{aligned} & 2 \text { wire: } 0 \ldots 60 \Omega \\ & \text { (DOh) } \end{aligned}$	$70.55 \Omega$	32511	overrange
	$0 \ldots 60 \Omega$	0 ... 27648	nominal range
	---	---	underrange
$\begin{aligned} & 2 \text { wire: } 0 \ldots 600 \Omega \\ & \text { (D1h) } \end{aligned}$	$705.5 \Omega$	32511	overrange
	$0 \ldots 600 \Omega$	0 ... 27648	nominal range
	---	---	underrange
$\begin{aligned} & 2 \text { wire: } 0 \ldots 3000 \Omega \\ & \text { (D2h) } \end{aligned}$	$3528 \Omega$	32511	overrange
	$0 \ldots 3000 \Omega$	0 ... 27648	nominal range
	---	---	underrange
$\begin{aligned} & 3 \text { wire: } 0 \ldots . .60 \Omega \\ & \text { (D8h) } \end{aligned}$	$70.55 \Omega$	32511	overrange
	$0 \ldots 60 \Omega$	0 ... 27648	nominal range
	---	---	underrange
$\begin{aligned} & 3 \text { wire: } 0 \ldots . . .600 \Omega \\ & \text { (D9h) } \end{aligned}$	$705.5 \Omega$	32511	overrange
	$0 \ldots 600 \Omega$	0 ... 27648	nominal range
	---	---	underrange
$\begin{aligned} & 3 \text { wire: } 0 \ldots 3000 \Omega \\ & \text { (DAh) } \end{aligned}$	$3528 \Omega$	32511	overrange
	$0 \ldots 3000 \Omega$	0 ... 27648	nominal range
	---	---	underrange
$\begin{aligned} & 4 \text { wire: } 0 \ldots 60 \Omega \\ & \text { (EOh) } \end{aligned}$	$70.55 \Omega$	32511	overrange
	$0 \ldots 60 \Omega$	0 ... 27648	nominal range
	---	---	underrange
$\begin{aligned} & 4 \text { wire: } 0 \ldots . . .600 \Omega \\ & \text { (E1h) } \end{aligned}$	705.5 ${ }^{\text {a }}$	32511	overrange
	$0 \ldots 600 \Omega$	0 ... 27648	nominal range
	---	---	underrange
$\begin{aligned} & 4 \text { wire: } 0 \ldots 3000 \Omega \\ & \text { (E2h) } \end{aligned}$	$3528 \Omega$	32511	overrange
	$0 \ldots 3000 \Omega$	0 ... 27648	nominal range
	---	---	underrange

## Diagnostics and interrupt

Event	Process interrupt	Diagnostics   interrupt	parameterizable
Error in project   engineering/   parameterization	-	X	-
Recognized wire   break	-	X	X
Measuring range   overflow	-	X	-
Measuring range   underflow	-	X	-
Limit overflow	X	-	X
Limit underflow	X	-	X
Process interrupt   lost	-	X	-

## Process interrupt

 of the OB 40A process interrupt causes a call of the OB 40 . Within the OB 40 you may find the logical basic address of the module that initialized the process interrupt by using the Local word 6. More detailed information about the initializing event is to find in the local double word 8.

Local double word 8 The local double word 8 of the OB 40 has the following structure:

Local byte	Bit $7 \ldots 0$
8	Bit 0: Limit overflow channel 0   Bit 1: Limit overflow channel 1      Bit 2: Limit overflow channel 2   Bit 3: Limit overflow channel 3   Bit 7 ... 4: 0 (fix)
9	Bit 0: Limit underflow channel 0   Bit 1: Limit underflow channel 1   Bit 2: Limit underflow channel 2   Bit 3: Limit underflow channel 3   Bit 7.. 4: 0 (fix)
10	16bit $\mu$ s value (high byte)
11	16bit $\mu$ s value (low byte)

16bit $\mu \mathrm{s}$ value
In the FS200 module there is a timer ( $\mu \mathrm{s}$ ticker). With PowerON the timer starts counting with 0 . After $65535 \mu$ s the timer starts with 0 again.
With each process interrupt the timer value is stored as 16 bit $\mu$ s value and may be accessed via the local double word 8 of the OB 40.

Diagnostic interrupt

Via the parameterization (record set 00h) you may activate a global diagnostic interrupt for the analog and digital part.
A diagnostic interrupt occurs when e.g. during a process interrupt execution in OB 40 another process interrupt is thrown for the same event. The initialization of a diagnostic interrupt interrupts the recent process interrupt execution in OB 40 and branches in OB 82 to diagnostic interrupt processing incoming. .
If during the diagnostic interrupt processing other events are occurring at other channels that may also cause a process res. diagnostic interrupt, these are interim stored.
After the end of the diagnostic interrupt processing at first all interim-stored diagnostic interrupts are processed in the sequence of their occurrence and then all process interrupts.
If a channel where currently a diagnostic interrupt incoming is processed res. interim stored initializes further process interrupts, these get lost. When a process interrupt for which a diagnostic interruptincoming has been released is ready, the diagnostic interrupt processing is called again as diagnostic interrupt $_{\text {going }}$.
All events of a channel between diagnostic interrupt $t_{\text {incoming }}$ and diagnostic interrupt $_{\text {going }}$ are not stored and get lost. Within this time window
(1. diagnostic interrupt incoming until last diagnostic interrupt ${ }_{\text {going }}$ ) the MF-LED of the module is on. Additionally for every diagnostic interrupt ${ }_{\text {incoming/going }}$ an entry in the diagnostic buffer of the CPU occurs.


Diagnostic interrupt processing

Record set 1
Diagnostic ${ }_{\text {incoming }}$

By using the SFB 52 you may read the diagnostic bytes. At de-activated diagnostic interrupt you have access to the last recent diagnostic event. If you've activated the diagnostic function in your hardware configuration, OB 82 is automatically called. Here you may react accordingly to the diagnostic. The SFB 52 allows you to also read the record set 1 that contains additional information. After leaving the OB 82 a clear assignment of the data to the last diagnostic interrupt is not longer possible.
The record set 1 has the following structure:

Byte	Bit 7 ... 0
0	Bit 0: set at module failure   Bit 1: set at internal error   Bit 2: set at external error   Bit 3: set at channel error   Bit 4: set when external auxiliary supply is missing   Bit 6 ... 5: 0 (fix)   Bit 7: Error in parameterization
1	Bit 3 ... 0: Module class 0101b: Analog module   Bit 4: Channel information present Bit 7 ... 5: 0 (fix)
2	0 (fix)
3	Bit 3 ... 0: 0 (fix)   Bit 4: internal communication error   Bit 5: 0 (fix)   Bit 6: Process interrupt lost   Bit 7: 0 (fix)
4	Bit 6 ... 0: Channel type   71h: Analog input   Bit 7: 0 (fix)
5	Number of diagnostic bits per channel (here 08h)
6	Number of channels of a module (here 04h)
7	Bit 0: Error in channel 0 Bit 1: Error in channel 1 Bit 2: Error in channel 2 Bit 3: Error in channel 3 Bit 7 ... 4: 0 (fix)
8	Channel specific error: Channel 0:   Bit 0: Error in project engineering/parameterization   Bit 3 ... 1: 0 (fix)   Bit 4: Wire break   Bit 5: Process interrupt lost   Bit 6: Measuring range underflow   Bit 7: Measuring range overflow

continued ...
... continue Record set 1

Byte	Bit 7 ... 0
9	Channel specific error: Channel 1:   Bit 0: Error in project engineering/parameterization   Bit 3 ... 1: 0 (fix)   Bit 4: Wire break   Bit 5: Process interrupt lost   Bit 6: Measuring range underflow   Bit 7: Measuring range overflow
10	Channel specific error: Channel 2:   Bit 0: Error in project engineering/parameterization   Bit 3 ... 1: 0 (fix)   Bit 4: Wire break   Bit 5: Process interrupt lost   Bit 6: Measuring range underflow   Bit 7: Measuring range overflow
11	Channel specific error: Channel 3:   Bit 0: Error in project engineering/parameterization   Bit 3 ... 1: 0 (fix)   Bit 4: Wire break   Bit 5: Process interrupt lost   Bit 6: Measuring range underflow   Bit 7: Measuring range overflow
12	0 (fix)
...	...
15	0 (fix)

Record set 1 Diagnostic ${ }_{\text {going }}$

After the removing error a diagnostic message $_{\text {going }}$ takes place.

## Chapter 5 Analog Output

## Overview <br> After the introduction to the analog output and the list of the output ranges the description of the analog output modules of the FS200 will be found here.

Content Topic Page
Chapter 5 Analog Output ..... 5-1
General ..... 5-2
Analog value ..... 5-3
Output ranges ..... 5-4
ELCO FS2-AO-BB30 - AO 2x12Bit 0...10V ..... 5-5
ELCO FS2-AO-BB40 - AO 2x12Bit 0(4)...20mA ..... 5-9
ELCO FS2-AO-BD30 - AO $4 \times 12$ Bit $0 . . .10 \mathrm{~V}$ ..... 5-13
ELCO FS2-AO-BD40 - AO 4x12Bit 0(4)...20mA. ..... 5-17

## General

## Cabling for analog signals

## Connecting loads

 and actuators

## Diagnostic

 functionsParameterization The modules may be parameterized by hardware configuration respectively at run time by means of SFCs.
You must only use screened cable when you are connecting analog signals. These cables reduce the effect of electrical interference. The screen of the analog signal cable should be grounded at both ends. In situations with different electrical potentials, it is possible that a current will flow to equalize the potential difference. This current could interfere with the analog signals. Under these circumstances it is advisable to ground the screen of the signal cable at one end only.

You can use the analog output modules to supply loads and actuators with current or voltage.

## Note!

Please take always care of the correct polarity when connecting actuators! Please leave the output clamps of not used channels disconnected and set the output type of the channel to "deactivated" in the hardware configurator from Siemens.

The modules have diagnostics capability. The following errors may release a diagnostic:

- Error in parameterization
- Short-circuit recognition
- Wire-break recognition


## Analog value

Analog value representation

The analog values are only processed in binary representation. Hereby the binary word variable is transformed into an analog process signal and put out via the corresponding channel.

Resolution	Analog value															
	High byte (byte 0)								Low byte (byte 1)							
Bit number	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Resolution	SG	$2^{14}$	$2^{13}$	$2^{12}$	$2^{11}$	$2^{10}$	$2^{9}$	$2^{8}$	$2^{7}$	$2^{6}$	$2^{5}$	$2^{4}$	$2^{3}$	$2^{2}$	$2^{1}$	$2^{0}$
12bit + SG	SG	Analog value (word)												X	X	X

Resolution With a resolution of 12bit plus sign bit, the least significant bits (3bit) are not relevant.

Sign bit (SG) The algebraic sign bit is represented by Bit 15. Here it is essential:
Bit $15=" 0 " \rightarrow$ positive value
Bit $15=" 1 " \rightarrow$ negative value

## Output ranges

## General

In the following there are the output ranges listed with function number, which were supported by the corresponding analog module.
The here listed formulas allow you to transform a value (digital value) to an analog value and vice versa.

## Output ranges

Voltage

Output range (function number)	Voltage (U)	Decimal (D)	Hex	Range	Formulas for calculation
0 ... 10V Siemens S7 format (10h)	11.76 V	32511	7EFFh	overrange	$U=D \cdot \frac{10}{27648}$
	10 V	27648	6 COOh	nominal range	
	5 V	13824	3600h		
	OV	0	0000h		$D=27648 \cdot \frac{U}{10}$
	Not possible, is limited to 0 V .			underrange	$\overline{10}$
0 ... 10V Siemens S5 format (20h)	12.5 V	20480	5000h	overrange	$U=D \cdot \frac{10}{16384}$
	10 V	16384	4000h	nominal range	
	5 V	8192	2000h		
	Not possible, is limited to 0V.				$D=16384 \cdot \frac{U}{10}$

Current

Output range (function number)	Current (1)	Decimal (D)	Hex	Range	Formulas for calculation
0 ... 20 mA Siemens S7 format (31h)	23.52 mA	32511	7EFFh	overrange	$I=D \cdot \frac{20}{27648}$
	20 mA	27648	6 COOh	nominal range	
	10 mA	13824	3600h		
	OmA	0	0000h		$D=27648 \cdot \frac{I}{2}$
	Not possible, is limited to OmA.			underrange	$D=27648 \cdot \frac{I}{20}$
0 ... 20 mA Siemens S5 format (41h)	25.00 mA	20480	5000h	overrange	$I=D \cdot \frac{20}{16384}$
	20 mA	16384	4000h	nominal range	
	10 mA	8192	2000h		
	Not possible, is limited to 0mA.				$D=16384 \cdot \frac{I}{20}$


$\begin{gathered} \text { Output range } \\ \text { (function number) } \end{gathered}$	Current (I)	Decimal (D)	Hex	Range	Formulas for calculation
4 ... 20 mA Siemens S7 format (30h)	22.81 mA	32511	7EFFh	overrange	$\begin{aligned} & I=D \cdot \frac{16}{27648}+4 \\ & D=27648 \cdot \frac{I-4}{16} \end{aligned}$
	20 mA	27648	6C00h	nominal range	
	12 mA	13824	3600h		
	4 mA	0	0000h		
	OmA	-6912	E500h	underrange	
4 ... 20 mA Siemens S5 format (40h)	24.00 mA	20480	5000h	overrange	$\begin{aligned} & I=D \cdot \frac{16}{16384}+4 \\ & D=16384 \cdot \frac{I-4}{16} \end{aligned}$
	20 mA	16384	4000h	nominal range	
	12 mA	8192	2000h		
	4 mA	0 -4096	0000h		
	OmA	-4096	F000h	underrange	

## ELCO FS2－AO－BB30－AO 2x12Bit 0．．．10V

## Description

The electronic module has 2 outputs with parameterizable functions． The channels of the module are isolated to the backplane bus by means of DC／DC converters．

Properties
－ 2 analog outputs
－Suited for sensors with 0 10 V
－12bit resolution

## Structure


［1］Locking lever terminal module
［2］Labeling strip
［3］Backplane bus
［4］LED status indication
［5］DC 24 V power section supply
［6］Electronic module
［7］Terminal module
［8］Locking lever electronic module
［9］Terminal

Status indication


LED	Color	Description		
RUN MF	green red	RUN	MF	
		－	－	Bus communication is OK Module status is OK
		－	－	Bus communication is OK Module status reports an error
		$\bigcirc$	$\bullet$	Bus communication is not possible Module status reports an error
		$\bigcirc$	$\bigcirc$	Error at bus power supply
		安	安	Error in parameterization
AO x	red	$\bullet$	Error channel x   －Overload，short－circuit   －Error in parameterization	

on：• off：○ blinks with 2 Hz ：淙

Pin assignment
For wires with a cross section of $0.08 \mathrm{~mm}^{2}$ up to $1.5 \mathrm{~mm}^{2}$.


Pos.	Function	Type	Description
1	AO 0	O	Channel 0
2	AGND	O	Ground channels
3	---	---	not connected
4	---	---	not connected
5	AO 1	O	Channel 1
6	AGND	O	Ground channels
7	---	---	not connected
8	---	---	not connected

O: Output

Technical data

Data	ELCO FS2-AO-BB30
Number of inputs	2 (single-ended)
Power supply	DC 24 V via power module
Input range	0 ... 10V
$\begin{aligned} & \text { Current consumption } \\ & 5 \mathrm{~V} \\ & 24 \mathrm{~V} \end{aligned}$	80 mA   35mA
Burden	min. $5 \mathrm{k} \Omega$ (short-circuit proof)
Resolution	12bit (incl. overrange area)
Conversion time	2 ms all channels
Operational limit   (in the entire temperature range, referred to the input range)	
Voltage range	$\pm 0.3 \%$
Basic error limit   (Operational limit at $25^{\circ} \mathrm{C}$, referred to the input range)	
Voltage range	$\pm 0.2 \%$
Isolation	500Veff (field voltage to the bus)
Module ID	0501 25D8
Bit-width in the process image	Output: 2x16bit data
Configurable	yes

Parameter data The parameter data may be accessed during runtime with the following record sets:

Record set		Meaning	Default
No.	Byte		
0	1	Bit 0: Short-circuit recognition channel 0 (1:on) Bit 0: Short-circuit recognition channel 1 (1:on) Bit 7 ... 2: reserved	00h
128	0	Function number channel 0	10h
129	0	Function number channel 1	10h

Function number channel x

In the following there are the measuring ranges with corresponding function number listed, which were supported by the analog module. With FFh the corresponding channel is deactivated.
The formulas listed here allow you to transform an evaluated measuring value (digital value) to a value assigned to the measuring range (analog value) and vice versa.

Output range (function number)	Voltage (U)	Decimal (D)	Hex	Range	Formulas for calculation
0 ... 10 V   Siemens S7 format (10h)	11.76 V	32511	7EFFh	overrange	$\begin{aligned} U & =D \cdot \frac{10}{27648} \\ D & =27648 \cdot \frac{U}{10} \end{aligned}$
	10 V	27648	6C00h	nominal range	
	5 V	13824	3600h		
	OV	0	0000h		
	Not possible, is limited to 0V.			underrange	
Siemens S 5 format (20h)	12.5 V	20480	5000h	overrange	$\begin{aligned} & U=D \cdot \frac{10}{16384} \\ & D=16384 \cdot \frac{U}{10} \end{aligned}$
	10 V	16384	4000h	nominal range	
	5 V	8192	2000h		
	Not possible, is limited to 0V.				

## Diagnostic data

So this module does not support interrupt functions, the diagnostics data serve for information about this module.
On error the corresponding channel LED of the module is activated and the error is registered in the diagnostics data.
The following errors are listed in the diagnostics data:

- Error in project engineering / parameterization
- Short-circuit/overload (if parameterized)

By using SFB 52 you always may access the diagnostic data of the module.
Record set 1 has the following structure:
Record set 1

Byte	Meaning
0	Bit 0: set at module failure   Bit 1: set at internal error   Bit 2: set at external error   Bit 3: set at channel error   Bit 4: set at external auxiliary supply missing   Bit 5, 6: 0 (fix)   Bit 7: Error in parameterization
1	Bit 3 ... 0: module class 0101 analog module   Bit 4: channel information present   Bit 7 ... 5: 0 (fix)
2, 3	0 (fix)
4	Bit 6 ... 0: channel type   73h: analog output   Bit 7: 0 (fix)
5	Number of diagnostic bits per channel (here 08h)
6	Number of channels of a module (here 02h)
7	Bit 0: channel error channel 0 Bit 1: channel error channel 1 Bit 7 ... 2: 0 (fix)
8	Channel-specific error channel 0:   Bit 0: configuring/parameter assignment error   Bit $2 . . .1: 0$ (fix)   Bit 3: short-circuit to ground   Bit 7 ... 4: 0 (fix)
9	Channel-specific error channel 1:   Bit 0: configuring/parameter assignment error   Bit 2 ... 1: 0 (fix)   Bit 3: short-circuit to ground   Bit 7 ... 4: 0 (fix)
10... 15	Bit $7 . .0$ 0: 0 (fix)

## ELCO FS2-AO-BB40 - AO 2x12Bit 0(4)...20mA

## Description

The electronic module has 2 outputs with parameterizable functions. The channels of the module are isolated to the backplane bus by means of DC/DC converters.

## Properties

- 2 analog inputs
- Suited for sensors with 0 ... 20mA; 4 ... 20mA
- 12bit resolution


## Structure


[1] Locking lever terminal module
[2] Labeling strip
[3] Backplane bus
[4] LED status indication
[5] DC 24 V power section supply
[6] Electronic module
[7] Terminal module
[8] Locking lever electronic module
[9] Terminal

Status indication


LED	Color	Description		
RUN MF	green red	RUN	MF	
		-	$\bigcirc$	Bus communication is OK Module status is OK
		-	-	Bus communication is OK Module status reports an error
		$\bigcirc$	-	Bus communication is not possible Module status reports an error
		$\bigcirc$	$\bigcirc$	Error at bus power supply
		安	安	Error in parameterization
AO x	red	-	Error channel x   - Error in parameterization   - Wire-break	

on: • off: ○ blinks with 2 Hz :

Pin assignment
For wires with a cross section of $0.08 \mathrm{~mm}^{2}$ up to $1.5 \mathrm{~mm}^{2}$.


Pos.	Function	Type	Description
1	AO 0	O	Channel 0
2	AGND	O	Ground channels
3	---	---	not connected
4	---	---	not connected
5	AO 1	O	Channel 1
6	AGND	O	Ground channels
7	---	---	not connected
8	---	---	not connected

O: Output

Technical data

Data	ELCO FS2-AO-BB40
Number of inputs	2 (single-ended)
Power supply	DC 24 V via power module
Input range	$0 \ldots 20 \mathrm{~mA} / 4 \ldots 20 \mathrm{~mA}$
$\begin{aligned} & \text { Current consumption } \\ & 5 \mathrm{~V} \\ & 24 \mathrm{~V} \end{aligned}$	80 mA   15 mA without load
Burden	max. 350
Resolution	12bit (incl. overrange area)
Conversion time	2 ms all channels
Operational limit   (in the entire temperature range, referred to the input range)	
0 ... 20mA	$\pm 0.4 \%$
$4 \ldots 20 \mathrm{~mA}$	$\pm 0.5 \%$
Basic error limit (Operational limit at $25^{\circ} \mathrm{C}$, referred to the input range)	
$0 \ldots 20 \mathrm{~mA}$	$\pm 0.2 \%$
$4 \ldots 20 \mathrm{~mA}$	$\pm 0.3 \%$
Isolation	500 Veff (field voltage to the bus)
Module ID	0502 25D8
Bit-width in the process image	Output: 2x16bit data
Configurable	yes

Function number channel x

The parameter data may be accessed during runtime with the following record sets:

Record set		Meaning	Default
No.	Byte		
0	1	Bit 0: Wire-break recognition channel 0 (1: on) Bit 1: Wire-break recognition channel 1 (1: on) Bit 7 ... 2: reserved	00h
128	0	Function number channel 0	31h
129	0	Function number channel 1	31h

In the following there are the measuring ranges with corresponding function number listed, which were supported by the analog module.
With FFh the corresponding channel is deactivated.
The formulas listed here allow you to transform an evaluated measuring value (digital value) to a value assigned to the measuring range (analog value) and vice versa.

Output range (function number)	Current (1)	Decimal (D)	Hex	Range	Formulas for calculation
0 ... 20 mA Siemens S7 format (31h)	23.52 mA	32511	7EFFh	overrange	$\begin{aligned} & I=D \cdot \frac{20}{27648} \\ & D=27648 \cdot \frac{I}{20} \end{aligned}$
	20 mA	27648	6C00h	nominal range	
	10 mA	13824	3600h		
	0 mA	0	0000h		
	Not possible, is limited to 0mA.			underrange	
0 ... 20mA Siemens S5 format (41h)	25.00 mA	20480	5000h	overrange	$I=D \cdot \frac{20}{16384}$
	20 mA	16384	4000h	nominal range	
	10 mA	8192	2000h		$D=16384 \cdot \frac{I}{20}$
	Not possible, is limited to 0mA.				


Output range (function number)	Current (I)	Decimal (D)	Hex	Range	Formulas for calculation
4 ... 20 mA Siemens S7 format (30h)	22.81 mA	32511	7EFFh	overrange	$\begin{aligned} & I=D \cdot \frac{16}{27648}+4 \\ & D=27648 \cdot \frac{I-4}{16} \end{aligned}$
	20 mA	27648	6C00h	nominal range	
	12 mA	13824	3600h		
	4 mA	0	0000h		
	0 mA	-6912	E500h	underrange	
4 ... 20 mA Siemens S5 format (40h)	24.00 mA	20480	5000h	overrange	$\begin{aligned} & I=D \cdot \frac{16}{16384}+4 \\ & D=16384 \cdot \frac{I-4}{16} \end{aligned}$
	20 mA	16384	4000h	nominal range	
	12 mA	8192	2000h		
	4mA	0	0000h		

## Diagnostic data

So this module does not support interrupt functions, the diagnostics data serve for information about this module.
On error the corresponding channel LED of the module is activated and the error is registered in the diagnostics data.
The following errors are listed in the diagnostics data:

- Error in project engineering / parameterization
- Wire-break (if parameterized)

By using SFB 52 you always may access the diagnostic data of the module.
Record set 1 has the following structure:
Record set 1

Byte	Meaning
0	Bit 0: set at module failure   Bit 1: set at internal error   Bit 2: set at external error   Bit 3: set at channel error   Bit 4: set at external auxiliary supply missing   Bit 5, 6: 0 (fix)   Bit 7: Error in parameterization
1	Bit 3 ... 0: module class 0101 analog module   Bit 4: channel information present   Bit 7 ... 5: 0 (fix)
2, 3	0 (fix)
4	Bit 6 ... 0: channel type   73h: analog output   Bit 7: 0 (fix)
5	Number of diagnostic bits per channel (here 08h)
6	Number of channels of a module (here 02h)
7	Bit 0: channel error channel 0 Bit 1: channel error channel 1 Bit 7 ... 2: 0 (fix)
8	Channel-specific error channel 0   Bit 0: configuring/parameter assignment error   Bit 3 ... 1: 0 (fix)   Bit 4: wire-break   Bit 7 ... 5: 0 (fix)
9	Channel-specific error channel 1   Bit 0: configuring/parameter assignment error   Bit 3 ... 1: 0 (fix)   Bit 4: wire-break   Bit 7 ... 5: 0 (fix)
10... 15	Bit $7 . . .0: 0$ (fix)

## ELCO FS2-AO-BD30 - AO 4x12Bit 0...10V

## Description

The electronic module has 4 outputs with parameterizable functions. The channels of the module are isolated to the backplane bus by means of DC/DC converters.

Properties

- 4 analog outputs
- Suited for sensors with 0 10 V
- 12bit resolution


## Structure


[1] Locking lever terminal module
[2] Labeling strip
[3] Backplane bus
[4] LED status indication
[5] DC 24 V power section supply
[6] Electronic module
[7] Terminal module
[8] Locking lever electronic module
[9] Terminal

Status indication


LED	Color	Description		
RUN   MF	green   red	RUN	MF	
		$\bullet$	$\circ$	Bus communication is OK   Module status is OK
		$\bullet$	$\bullet$	Bus communication is OK   Module status reports an error
	$\circ$	$\bullet$	Bus communication is not possible   Module status reports an error	
	$\circ$	$\circ$	Error at bus power supply	

on: • off: ○ blinks with 2 Hz : 诊

Pin assignment
For wires with a cross section of $0.08 \mathrm{~mm}^{2}$ up to $1.5 \mathrm{~mm}^{2}$.


Pos.	Function	Type	Description
1	AO 0	O	Channel 0
2	AGND	O	Ground channels
3	AO 2	O	Channel 2
4	AGND	O	Ground channels
5	AO 1	O	Channel 1
6	AGND	O	Ground channels
7	AO 3	O	Channel 3
8	AGND	O	Ground channels

O: Output

Technical data

Data	ELCO FS2-AO-BD30
Number of inputs	4 (single-ended)
Power supply	DC 24 V via power module
Input range	$0 \ldots 10 \mathrm{~V}$
Current consumption	
5 V	80 mA
24 V	

Parameter data The parameter data may be accessed during runtime with the following record sets:

| Record set <br> No. |  | Byte |
| :---: | :---: | :--- | :---: | Meaning $\quad$ Default $\mid$ ( | Bit 0: Short-circuit recognition channel 0 (1:on) |
| :---: |
| 0 |

Function number channel x

In the following there are the measuring ranges with corresponding function number listed, which were supported by the analog module.
With FFh the corresponding channel is deactivated.
The formulas listed here allow you to transform an evaluated measuring value (digital value) to a value assigned to the measuring range (analog value) and vice versa.

Output range (function number)	Voltage (U)	Decimal (D)	Hex	Range	Formulas for calculation
0 ... 10V Siemens S7 format (10h)	11.76 V	32511	7EFFh	overrange	$U=D \cdot \frac{10}{27648}$
	10 V	27648	6 COOH	nominal range	
	5 V	13824	3600h		
	OV	0	0000h		$D=27648$
	Not possible, is limited to 0V.			underrange	$D=27648 \cdot \frac{U}{10}$
0 ... 10V Siemens S5 format (20h)	12.5 V	20480	5000h	overrange	$U=D \cdot \frac{10}{16384}$
	10 V	16384	4000h	nominal range	
	5 V	8192	2000h		
	Not possible, is limited to 0 V .				$D=16384 \cdot \frac{U}{10}$

## Diagnostic data

So this module does not support interrupt functions, the diagnostics data serve for information about this module.
On error the corresponding channel LED of the module is activated and the error is registered in the diagnostics data.
The following errors are listed in the diagnostics data:

- Error in project engineering / parameterization
- Short-circuit/overload (if parameterized)

By using SFB 52 you always may access the diagnostic data of the module.
Record set 1 has the following structure:
Record set 1

Byte	Meaning
0	Bit 0: set at module failure   Bit 1: set at internal error   Bit 2: set at external error   Bit 3: set at channel error   Bit 4: set at external auxiliary supply missing   Bit 5, 6: 0 (fix)   Bit 7: Error in parameterization
1	Bit 3 ... 0: module class 0101 analog module   Bit 4: channel information present Bit 7 ... 5: 0 (fix)
2, 3	0 (fix)
4	Bit 6 ... 0: channel type   73h: analog output   Bit 7: 0 (fix)
5	Number of diagnostic bits per channel (here 08h)
6	Number of channels of a module (here 04h)
7	Bit 0: channel error channel 0 Bit 1: channel error channel 1 Bit 2: channel error channel 2 Bit 3: channel error channel 3 Bit 7... 4:0 (fix)
8	Channel-specific error channel 0:   Bit 0: configuring/parameter assignment error   Bit 2 ... 1: 0 (fix)   Bit 3: short-circuit to ground   Bit 7... 4: 0 (fix)
9	Channel-specific error channel 1:   Bit 0: configuring/parameter assignment error   Bit 2 ... 1: 0 (fix)   Bit 3: short-circuit to ground   Bit 7 ... 4: 0 (fix)
10	Channel-specific error channel 2:   Bit 0: configuring/parameter assignment error   Bit 2 ... 1: 0 (fix)   Bit 3: short-circuit to ground   Bit 7 ... 4: 0 (fix)
11	Channel-specific error channel 3:   Bit 0: configuring/parameter assignment error   Bit 2 ... 1: 0 (fix)   Bit 3: short-circuit to ground   Bit 7 ... 4: 0 (fix)
12... 15	Bit 7 ... 0:0 (fix)

## ELCO FS2-AO-BD40 - AO 4x12Bit 0(4)...20mA

## Description

The electronic module has 4 outputs with parameterizable functions. The channels of the module are isolated to the backplane bus by means of DC/DC converters.

Properties

- 4 analog inputs
- Suited for sensors with $0 . . .20 \mathrm{~mA} ; 4 \ldots 20 \mathrm{~mA}$
- 12bit resolution


## Structure


[1] Locking lever terminal module
[2] Labeling strip
[3] Backplane bus
[4] LED status indication
[5] DC 24 V power section supply
[6] Electronic module
[7] Terminal module
[8] Locking lever electronic module
[9] Terminal

Status indication


LED	Color	Description		
RUN   MF	green   red	RUN	MF	
		$\bullet$	$\circ$	Bus communication is OK   Module status is OK
		$\bullet$	$\bullet$	Bus communication is OK   Module status reports an error
	$\circ$	$\bullet$	Bus communication is not possible   Module status reports an error	
	$\circ$	$\circ$	Error at bus power supply	

on: • off: ○ blinks with 2 Hz : 淙

Pin assignment
For wires with a cross section of $0.08 \mathrm{~mm}^{2}$ up to $1.5 \mathrm{~mm}^{2}$.


Pos.	Function	Type	Description
1	AO 0	O	Channel 0
2	AGND	O	Ground channels
3	AO 2	O	Channel 2
4	AGND	O	Ground channels
5	AO 1	O	Channel 1
6	AGND	O	Ground channels
7	AO 3	O	Channel 3
8	AGND	O	Ground channels

O: Output

Technical data

Data	ELCO FS2-AO-BD40
Number of inputs	4 (single-ended)
Power supply	DC 24 V via power module
Input range	$0 \ldots . .20 \mathrm{~mA} / 4 . .20 \mathrm{~mA}$
$\begin{aligned} & \text { Current consumption } \\ & 5 \mathrm{~V} \\ & 24 \mathrm{~V} \end{aligned}$	80 mA   15 mA without load
Burden	max. 350 ${ }^{\text {a }}$
Resolution	12bit (incl. overrange area)
Conversion time	2 ms all channels
Operational limit (in the entire temperature range, referred to the input range)	
$0 \ldots 20 \mathrm{~mA}$	$\pm 0.4 \%$
$4 \ldots 20 \mathrm{~mA}$	$\pm 0.5 \%$
Basic error limit   (Operational limit at $25^{\circ} \mathrm{C}$, referred to the input range)	
0 ... 20mA	$\pm 0.2 \%$
$4 \ldots 20 \mathrm{~mA}$	$\pm 0.3 \%$
Isolation	500 Veff (field voltage to the bus)
Module ID	0504 25E0
Bit-width in the process image	Output: 4x16bit data
Configurable	yes

Parameter data The parameter data may be accessed during runtime with the following record sets:

Record set		Meaning	Default
No.	Byte		
0	0	Bit 0: Wire-break recognition channel 0 (1: on) Bit 1: Wire-break recognition channel 1 (1: on) Bit 2: Wire-break recognition channel 2 (1: on) Bit 3: Wire-break recognition channel 3 (1: on) Bit 7 ... 4: reserved	00h
128	0	Function number channel 0	31h
129	0	Function number channel 1	31h
130	0	Function number channel 2	31h
131	0	Function number channel 3	31h

Function number channel x

In the following there are the measuring ranges with corresponding function number listed, which were supported by the analog module.
With FFh the corresponding channel is deactivated.
The formulas listed here allow you to transform an evaluated measuring value (digital value) to a value assigned to the measuring range (analog value) and vice versa.

$\begin{gathered} \text { Output range } \\ \text { (function number) } \end{gathered}$	Current (I)	Decimal (D)	Hex	Range	Formulas for calculation
0 ... 20mA Siemens S7 format (31h)	23.52 mA	32511	7EFFh	overrange	$\begin{aligned} & I=D \cdot \frac{20}{27648} \\ & D=27648 \cdot \frac{I}{20} \end{aligned}$
	20 mA	27648	6C00h	nominal range	
	10 mA	13824	3600h		
	0 mA	0	0000h		
	Not possible, is limited to 0mA.			underrange	
0 ... 20 mA Siemens S5 format (41h)	25.00 mA	20480	5000h	overrange	$\begin{aligned} & I=D \cdot \frac{20}{16384} \\ & D=16384 \cdot \frac{I}{20} \end{aligned}$
	20 mA	16384	4000h	nominal range	
	10 mA	8192	2000h		
	OmA	$\frac{0}{0}$, is limited to	0000h		


Output range (function number)	Current (I)	Decimal (D)	Hex	Range	Formulas for calculation
4 ... 20 mA Siemens S7 format (30h)	22.81 mA	32511	7EFFh	overrange	$\begin{aligned} & I=D \cdot \frac{16}{27648}+4 \\ & D=27648 \cdot \frac{I-4}{16} \end{aligned}$
	20 mA	27648	6C00h	nominal range	
	12 mA	13824	3600h		
	4 mA	0	0000h		
	0 mA	-6912	E500h	underrange	
4 ... 20 mA Siemens S5 format (40h)	24.00 mA	20480	5000h	overrange	$\begin{aligned} & I=D \cdot \frac{16}{16384}+4 \\ & D=16384 \cdot \frac{I-4}{16} \end{aligned}$
	20 mA	16384	4000h	nominal range	
	12 mA	8192	2000h		
	4 mA	0	0000h		
	0 mA	-4096	F000h	underrange	

Diagnostic data

So this module does not support interrupt functions, the diagnostics data serve for information about this module.
On error the corresponding channel LED of the module is activated and the error is registered in the diagnostics data.
The following errors are listed in the diagnostics data:

- Error in project engineering / parameterization
- Wire-break (if parameterized)

By using SFB 52 you always may access the diagnostic data of the module.
Record set 1 has the following structure:

Byte	Meaning
0	Bit 0: set at module failure   Bit 1: set at internal error   Bit 2: set at external error   Bit 3: set at channel error   Bit 4: set at external auxiliary supply missing   Bit 5, 6: 0 (fix)   Bit 7: Error in parameterization
1	Bit 3 ... 0 : module class 0101 analog module   Bit 4: channel information present Bit 7... 5: 0 (fix)
2, 3	0 (fix)
4	Bit 6 ... 0: channel type   73h: analog output Bit 7: 0 (fix)
5	Number of diagnostic bits per channel (here 08h)
6	Number of channels of a module (here 04h)
7	Bit 0: channel error channel 0 Bit 1: channel error channel 1 Bit 2: channel error channel 2 Bit 3: channel error channel 3 Bit 7... 4: 0 (fix)
8	Channel-specific error channel 0 :   Bit 0: configuring/parameter assignment error   Bit 3 ... 1: 0 (fix)   Bit 4: wire-break   Bit 7 ... 5: 0 (fix)
9	Channel-specific error channel 1:   Bit 0: configuring/parameter assignment error   Bit 3 ... 1: 0 (fix)   Bit 4: wire-break   Bit 7 ... 5: 0 (fix)
10	Channel-specific error channel 2:   Bit 0: configuring/parameter assignment error   Bit 3 ... 1: 0 (fix)   Bit 4: wire-break   Bit 7 ... 5: 0 (fix)
11	Channel-specific error channel 3:   Bit 0: configuring/parameter assignment error   Bit 3 ... 1: 0 (fix)   Bit 4: wire-break   Bit 7 ... 5: 0 (fix)
10... 15	Bit 7 ... 0:0 (fix)


[^0]:    on: • off: ○ blinks with 2 Hz :

[^1]:    on: • off: ○ blinks with 2 Hz :

[^2]:    on: • off: ○ blinks with 2 Hz :

[^3]:    *) with 2 channel operation FFh

